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Dynamics of Liquidity in an Electronic Limit Order Book Market 

 

 

Abstract 

We take advantage of special features of a limit order book to construct measures of liquidity.  It 
is first shown that liquidity varies substantially over the trading day.  This is of interest, in part, 
because we provide strong evidence that discretionary traders trade in high liquidity periods.  We 
also model the comovements of liquidity, returns, and volatility of returns.  In doing so, several 
results emerge.  Our findings are consistent with models where liquidity is a factor in expected 
returns, but also suggest more complicated dynamics consonant with supply and demand imbal-
ances in the market.  Furthermore, while increases in liquidity substantially reduce volatility, 
volatility shocks reduce liquidity over the short-run, impairing price efficiency.  These effects 
dissipate quickly, however, and their magnitudes are small, indicating a high degree of market 
resiliency. 
 

JEL Classification: G10, G34 

Keywords:  Electronic trading, liquidity, execution costs, return dynamics 



1. Introduction 

 The automated auction has transformed securities markets.  Advantages of speed, sim-

plicity, and low costs drive the rapid adoption of automated auctions to trade equities, bonds, 

foreign exchange, and derivatives worldwide.1  Unlike traditional markets, trading in an auto-

mated auction is through an electronic limit order book without the need for a physical exchange 

floor or intermediaries such as market makers.  But in the absence of intermediaries, an auto-

mated auction is dependent on public limit orders for liquidity.  If the limit order book is thin, 

even small trades can induce large price movements, increasing trading costs and volatility.  

Such time-variation in liquidity can exhibit complex dynamics that are not well understood.  For 

example, discretionary traders may pool together, providing a virtuous circle where liquidity be-

gets liquidity.  The converse is also possible.  In a vicious circle, market illiquidity and high 

volatility discourage the use of limit orders, reinforcing a low-liquidity equilibrium.2  Intertem-

poral variation in liquidity is also important given evidence that liquidity affects expected re-

turns. 

 This paper examines liquidity in an automated auction and the resulting dynamics of 

overall market liquidity, volatility, and returns.  The analysis in this paper follows three steps.  

We first document that liquidity varies substantially across the trading day.  To show that this re-

sult is not just of academic interest, we next provide strong evidence that changes in liquidity af-

fects traders’ behavior.  Given this, the next logical step is to determine, in part, why liquidity is 

variable.  By examining the comovements of liquidity, returns, and volatility, we shed some light 

on this latter issue.       

 We use intraday order-level data obtained from the electronic market for Swedish stock 

index futures (henceforth OMX).  Our dataset is one of the few complete limit order books in ex-

                                                 
1 Outside the US and a handful of emerging markets, virtually all equity and derivative trading systems are auto-
mated.  A partial list of major automated markets includes, for equities, the Toronto Stock Exchange, Euronext 
(Paris, Amsterdam, Brussels), Borsa Italiana, National Stock Exchange (India), London Stock Exchange, Trade-
point, SEATS (Australian Stock Exchange), Copenhagen Stock Exchange, Deutsche Borse, and Electronic Com-
munication Networks such as Island.  Fixed income examples include eSpeed, Euro MTS, BondLink, and BondNet.  
Foreign exchange examples are Reuters 2002 and EBS.  Derivative examples include Eurex, Globex, Matif, and 
LIFFE. Domowitz (1993) provides a taxonomy of automated systems and updates are contained in Domowitz and 
Steil (1999). 
2 Such issues relating to viability and stability are reviewed from a theoretical perspective in O'Hara (1995, ch. 7). 



istence and is ideally suited for our study in several respects.3  In particular, we observe the in-

stantaneous demand and supply curves at every point in time.  These yield natural metrics for li-

quidity in terms of market depth, i.e., order flow necessary to move price by a given amount.  

The cross-border automated limit order book system studied here is typical of many markets, in-

cluding the Toronto Stock Exchange and Paris Bourse, allowing for some confidence that our re-

sults are not artifacts of special institutional arrangements. An unusual, but valuable, feature of 

our database is that it identifies orders arising from the so-called “upstairs” market where large-

block trades are negotiated and crossed.  Failure to distinguish these trades from regular trades 

biases any assessment of the real costs of trading and true underlying liquidity of the market.4  

Finally, the index futures contracts traded represent claims to the entire equity market, so that 

our analysis is one of aggregate liquidity.   

 Beyond any interest in the operation of a pure limit order market itself, limit order book 

data permit the investigation of broad questions concerning the microstructure of markets.  For 

example, measures of liquidity are constructed here, based on the instantaneous demand and sup-

ply curves inherent in the limit order book.  We show that the variation in liquidity over time is 

economically and statistically significant.  This is consistent with strategic models, in which 

discretionary traders trade in high liquidity periods, in turn reinforcing the concentration of vol-

ume and liquidity at certain points in time.   

 The results suggest that traders can add value by strategic order placement behavior.  We 

present evidence in favor of this hypothesis.  In particular, the actual execution costs incurred by 

traders are significantly lower than the costs that would be incurred under a naïve strategy that 

ignores time-variation in liquidity.  The cost differences are especially pronounced for larger 

trades, even after excluding off-exchange crossed trades.  One implication of this result is that 

institutional traders who simply partition their orders mechanically over the day with the objec-

tive of trading at the “value weighted average price” could benefit from attempting to time their 

                                                 
3 The Paris Bourse data, for forty stocks, is described and analyzed by Biais, Hillion, and Spatt (1995), and 
Gouriéroux, Le Fol, and Meryer (2000) provide a factor analysis of the order queue for a single stock.  Hollifield, 
Miller, and Sandås (1999) and Sandås (1999) use OM data, but for a selection of 10 stocks traded on the equities 
order book.  Some data also are available for trading on the Australian SEATS automated system, Toronto Stock 
Exchange, and Tel Aviv Stock Exchange. 
4 For example, if the market is very illiquid, institutions may send large orders upstairs market so that more crosses 
are observed.  Without explicit identifiers, such mid-quote executions would falsely suggest a high level of liquid-
ity. 
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trades to take advantage of periodic liquidity surpluses while avoiding liquidity deficits.  The 

nonlinear nature of the demand and supply schedules, together with systematic intraday variation 

in liquidity, generally implies that the optimal dynamic trading strategy is not uniform.   

 Finally, we analyze the dynamic relation between measures of liquidity, volatility, and 

short-horizon expected returns using structural vector autoregressive models, where the change 

in the midquote and the absolute value of the change in midquote are used as proxies for returns 

and volatility, respectively, throughout this paper.  A growing literature suggests that there is a 

relation between liquidity and expected returns. Amihud and Mendelson (1986, 1991) find cross-

sectional evidence of a positive relation between asset returns and bid-ask spreads, for example.  

Amihud, Mendelson, and Lauterbach (1997) document large changes in asset values for stocks 

moving to more liquid trading systems on the Tel Aviv Stock Exchange. Brennan and Subrah-

manyam (1996) and Brennan, Chordia, and Subrahmanyam (1999) show that liquidity can ex-

plain the cross-sectional variation in returns while Hasbrouck and Seppi (2000) examine com-

monality in liquidity.  All such findings are cross-sectional in nature.  Our time-series analysis is 

complementary, suggests some complicated and unexplored dynamics, and provides support for 

microstructure models such as that of Spiegel and Subrahmanyam (1995), where liquidity is a 

factor in expected returns.  In particular, volatility shocks reduce liquidity, a fact that supports 

arguments for trading halts following sharp market movements.  Shocks to liquidity dissipate 

quickly, indicating a high degree of resiliency.  This self-correcting ability turns out to be an at-

tractive feature of the automated auction, mitigating doubts with respect to the resilience of that 

form of market structure under pressure. 

 The paper proceeds as follows: institutions and data underlying the analysis are laid out 

in section 2; section 3 contains the formal definition of liquidity and results showing that liquid-

ity varies across the trading day; section 4 provides evidence of discretionary trading; section 5 

presents the autoregressive model for joint analysis of liquidity and returns; the dynamic relation 

between liquidity and volatility is examined in section 6, and some concluding remarks are of-

fered in section 7. 
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2. Institutions and Data 

2.1. Market Architecture  

Trading in Swedish stock index futures contracts takes place via a consolidated auto-

mated trade execution system, including activity from Sweden, the U.K., Denmark, and the 

Netherlands.  We refer to the overall market as OMX, given the complete integration of trading 

across countries.5 

The electronic system functions as a continuous pure limit order book market.  Trading 

on the order book is in round lots of 10 contracts.  Orders are prioritized on the book in terms of 

price, then time.  There are two ways in which a trade may be executed.  Counterparty limit or-

ders may match on the book in terms of price, in which case the maximum feasible size is filled.6  

Alternatively, a trader may “hit the bid” or “lift the offer,” taking up to as much quantity as ad-

vertised on the book.  This is accomplished by executing a single keystroke and submitting de-

sired volume.  Once a trade is completed, unexecuted volume at the trade price remains on the 

order book, until cancelled.  Cancellations of orders are possible at any time. 

The trading day is six hours, beginning at 9:00 AM and ending at 3:00 PM, GMT.  Unlike 

many automated markets, such as the Paris Bourse, there is no opening algorithm or batch auc-

tion at the beginning of the day.  With that exception, the design and mechanics of the OMX 

market are quite similar to that described by Biais, Hillion, and Spatt (1995) for the CAC system, 

and by Domowitz (1993) for generic price/time priority continuous limit order systems. 

There are some additional features that are relevant to the analysis to follow.  Block 

transactions are allowed, in the form of “crosses.”  Crosses are arranged “upstairs” or off-

exchange, and the two sides are not listed on the order book.   Nevertheless, crosses, described in 

terms of price and quantity, are displayed in the continuous time transaction record observed by 

traders.  Unlike the practice in some other markets, there is no interference with a cross from ac-

tivity on the limit order market.7  A small amount of odd-lot trading also takes place. A separate 

                                                 
5 Clearing is conducted on a local basis.  The Swedish contract originated on OM Stockholm in 1985, and OMLX, 
the London Securities and Derivatives Exchange, was established in 1989, with the additional links following there-
after. 
6 “Locked markets” do not result if an entered bid price is higher than an offer price on the book.  A transaction oc-
curs based on time priority, at the offer price in this example. 
7 The Swiss SOFFEX derivatives system, for example, exposes arranged trades to the limit order book, similar to 
the practice on the NYSE for upstairs blocks. 
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facility exists for this activity, but such trading is integrated with the main book.  For example, 

an odd lot of 3 contracts and one of 7 contracts automatically matches with a round lot of 10 con-

tracts on the main book.   

Order and trade information are distributed directly from the trading system, making the 

OMX highly transparent.8  Specifically, market participants observe a transactions record (price 

and volume) and the five best bids and offers on the book, with aggregate volume at each price.9  

No “indicative” prices or other non-price expressions of trading interest are provided.  A trader 

may view information through OM’s interface or accept a real-time feed, which allows for cus-

tomized screens and data processing.  Although this seems to be a small detail, it proves relevant 

in the analysis of trading cost management to follow. 

2.2. Data 

Our database comprises the complete limit order book for Swedish stock index futures 

contracts from the period 7/31/95 through 2/23/96.  The data are obtained from a trading house 

that chose the real-time feed, permitting the collection of some historical information for analy-

sis.10  Prices are denominated in Swedish currency (SEK), and volume is given in number of 

contracts.  Information is time-stamped to the second.  Transactions files and order information 

are matched.  The order book is reconstructed from the raw data and completely consistent with 

transactions reported.11  Odd-lot trades are identified, but constitute only about three percent of 

all trades, and average less than five contracts per trade.  Crosses are isolated, and matched in 

time with limit order book trading activity. 

Activity for near-term contracts is analyzed in what follows, since there is little liquidity 

in contracts for which expiration is further away.  Some data is eliminated at the end of expira-

                                                 
8 Transparency refers to the quantity and quality of information provided to market participants during the trading proc-
ess.  Limit order markets are typically highly transparent because they provide relevant information before (quotes, 
depths) and after (actual prices, volumes) trade occurs. By contrast, foreign exchange and corporate junk bond markets 
rely heavily on dealers to provide continuity but offer very little transparency while other dealer markets, such as  
Nasdaq, offer moderate degrees of transparency. 
9 There is some facility for so-called “hidden orders” that are unobserved by traders.  As in the analyses of Biais, 
Hillion, and Spatt (1995) and Hollifield, Miller, and Sandås (1999), we cannot ascertain the effects of such unob-
servable orders, but their importance in automated systems is generally very limited as discussed by Irvine, Benston, 
and Kandel (2000).   
10 We thank Lester Loops, who provided the raw numbers and some assistance with issues involved in merging the 
order and transactions records. 
11 Irregularities, initially constituting about one percent of trading activity, were uncovered, but all are reconciled 
with the assistance of the trading house that provided the original data. 
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tion cycles, mitigating liquidity effects stemming from lack of trading due to rollover effects. 

The daily average number of orders, cancels, and transactions in the data analyzed below are 

1941, 1334, and 177, respectively. 

3. Liquidity 

 In what follows, we define market liquidity or depth as the number of contracts offered 

for sale at up to k ticks from the midquote.  We distinguish between liquidity on the buy and sell 

sides, denoted by and , respectively.  These measures are natural in that they can be 

interpreted as the volume necessary to move the price by k ticks.  More liquid markets are deeper 

in that they can accommodate larger trades for a given price impact. 

)(kDb )(kDa

 Table 1 contains summary statistics relating to the depth of the order book, in number of 

contracts, by time of day, averaged over 105 trading days.  Data for the bid side appears in Panel 

A, and data for the offer side appears in Panel B.  Column headings indicate the number of ticks 

away from the midpoint of the best quote in the market at the time.  The figures reported are the 

number of contracts available at or below that number of ticks away from the midquote.  Essen-

tially, these figures constitute the instantaneous supply and demand curves, averaged across 

days.  For example, from Panel A, at 10:15 AM, there are (on average) 58 contracts bid at up to 8 

ticks below the midquote.  Market depth at any distance from the midquote is lowest at the open-

ing session mainly because there is no opening algorithm or batch auction at the beginning of the 

day. 

 The instantaneous demand and supply schedules are of considerable interest in them-

selves, because their shape provides some clue with respect to strategic trading activity.  Linear 

schedules suggest that large orders are broken up into equal size blocks for submission over the 

trading day in a uniform manner.  Nonlinearity suggests departures from such a uniform strategy.  

We investigate the potential nonlinearity of schedules by estimating polynomial approximations 

to the bid and offer curves.12  The regressions relate average depth to the number of ticks away 

from the midquote.  The approximations are graphed in Figure 1 for bid and offer schedules. A 

linear approximation is also illustrated.  The bid and offer functions are roughly S-shaped, with 

                                                 
12 A fifth-order polynomial is used for the results reported. 
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slight convexity at prices close to the spread midpoint, and considerable departure from linearity 

starting at about eight ticks (approximately 0.16 percent of value) away from the midquote.   

 Comparing Panels A and B, the bid and offer sides of the book are roughly symmetric in 

terms of depth and execution probabilities.  There appears to be little difference between the de-

mand and supply schedules, on average, which also is evident from Figure 1.  This suggests that 

trading behavior and patterns arising from order imbalances are likely to be short-lived, a topic 

investigated further in section 5. 

 Casual inspection of depth by time of day suggests little time variation in liquidity, ex-

cept for the open.  This is incorrect.  First, the standard deviation (not provided) of depth is large, 

even relative to the mean, in all cases reported in table 1.  In other words, there is considerable 

variation in observed depth at different times of day even though on average they are roughly 

equivalent.  Second, first-order autoregressive models of depth suggest a moderate degree of 

mean reversion in liquidity, and a large residual variance relative to mean depth.13  Such results 

also suggest substantial time variation, but not necessarily that which would be captured by sim-

ple time-of-day analysis.  In fact, models such as that of Admati and Pfleiderer (1988) do not 

predict time-of-day effects, although they are often associated with empirical phenomena at the 

open or close.  Rather, they predict that patterns in liquidity and trading occur over time, with no 

statement as to the clock, as pointed out by O'Hara (1995, p. 139).   

 

4.   Discretionary Trading  
 Discretionary timing of trades involves several underlying hypotheses and predictions.  

In Admati and Pfleiderer (1988), it is optimal for discretionary uninformed traders to trade at the 

same time, for example.  This in turn implies liquidity clustering, in an environment in which in-

formed trading further exaggerates the clustering effect.  In Scharfstein and Stein (1990), large 

order flows, observable here through the book, encourage entry by traders, suggesting that 

greater liquidity should be correlated with more and larger trades.  A similar herding effect in the 

case of discretionary timing is predicted by Spiegel and Subrahmanyam (1995).  An even sharper 

result is obtained by Mendelson and Tunca (2000).  In their model, discretionary liquidity traders 
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adjust order sizes along with changing market depth, equalizing trading costs across size of 

transaction. 

4.1. Price Impact Functions 

We begin by summarizing in a simple manner the expected trading costs facing a trader 

at any point in time based on the prevailing demand and supply schedules.  In particular, con-

sider a market order of size Q (with the sign convention that Q > 0 represents a purchase and Q < 

0 a sale) that, given the extant book, is executed at k different prices, with qk shares executing at 

a price pk, where Σ qk = Q.  The price impact of the trade is then defined in terms of the appropri-

ately signed percentage difference between the weighted-average execution price and the pre-

trade midpoint: 

 )(ln)(
0

Qsign
Qp

qp
Qp kk











= ∑ , (1) 

where p0 is the midpoint of the bid-ask spread at the time of the trade.  The price impacts thus 

defined are inversely related to the depth measures defined above.  So, for example, if D = 

Q,  

)k(b

the total price movement associated with a buy order of size Q is k.14   

Table 2 contains the expected price impact of trades, reported in percentage terms rela-

tive to the quote midpoint, by time of day.  Calculations are done for hypothetical trades of 10 to 

100 contracts in increments of 10, compared with the observed order book at a specific time of 

day, averaged over 105 trading days.  Figures in the row marked “average” are computed based 

on computations at 15-minute intervals over the trading day, averaged over intervals and trading 

days.  Panel A contains data for transactions at the bid, and Panel B contains figures for transac-

tions at the offer.  As one might expect, the price impact of the trade is strictly increasing in or-

der size, ranging from 7 to 15 basis points overall.  Consistent with table 2, the price impacts are 

much higher at the open, but do not vary by whether the order is a market buy or a market sell. 

                                                                                                                                                             
13 First order serial correlation coefficients for depth at 6 ticks away from the midquote, for example, are 0.66 and 
0.60 on the bid and offer side, respectively, with estimated residual standard deviations of between 22 and 23, rela-
tive to means of between 24 and 50 in Table 1, and constant terms of 13 to 15 in the autoregressions. 
14  The actual percentage price impact depends on the distribution of limit orders on the price grid.  Suppose p0 = 
100, Q=50, and at p1 =110 there are 20 contracts, and at p2=120 there are 40 contracts.  Then 
p(50)=ln[(110x20+120x30)/100x50]=0.148.  If there were 50 contracts at p1, then p(50)=0.095. 
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In equity market studies, it is increasingly common to model the price impact of a trade 

as a strictly concave function of size.  Hasbrouck (1991), for example, advocates the use of 

square-root transformations for order size.  Similar results are obtained by Madhavan and Smidt 

(1991), among others.  By contrast, the price impacts here are nearly linear functions of size.   

The difference between our results and those based on NYSE or Nasdaq data might be 

the result of market structure.  On the NYSE, for example, the trading crowd and specialist may 

step in to provide liquidity for large orders, while Nasdaq dealers may offer volume discounts to 

their customers.  On an automated auction like the OMX, however, traders are unwilling to offer 

large quantities at prices far away from the current price.  Such limit orders constitute free op-

tions to the market, options that will be taken if the market moves by a large amount.  The ab-

sence of depth at far prices implies that the price impact function is convex, because large trades 

incur proportionately greater costs. 

It is also possible that the difference in the shape of the price impact function reflects up-

stairs trades.   The data used to test models of the U.S. equity markets do not identify large-block 

trades executed upstairs.  These trades typically occur within the bid-ask spread, possibly biasing 

the estimated costs of execution for large orders downward.  This is not an issue for us, since the 

computations in table 2 use the current limit order book. 

4.2. Realized Price Impact Costs 

We view the costs in table 2 as a benchmark, being produced from a completely naïve 

trading strategy.  Table 3 contains the actual price impact of trades, reported in percentage terms 

relative to the quote midpoint, by time of day. We use equation (1) to compute these impacts ex-

cept that we use the realized executions from an incoming market order in computing the trade 

price.  Calculations are done for actual trades of 10 to 100 contracts in increments of 10, com-

pared with the observed order book at the time of trade, over 105 trading days.   

In contrast to table 2, the realized impacts in table 3 are virtually constant across order 

sizes. This pattern is true for both trades on the bid and offer sides.  It also is true for off-

exchange crosses.  The results are strongly supportive of the Mendelson-Tunca (2000) model of 

discretionary trading equilibrium.  It also is evident that traders obtain substantially lower costs 

than they would through a naïve order submission strategy, especially for large orders, even ig-

noring crosses.  For example, the hypothetical price impact of a trade on the bid side for 100 
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contracts is 275 percent larger than realized price impact costs.  These findings support the 

predictions of the Admati-Pfleiderer (1988) model.   

Constancy of price impact across size has an immediate practical implication.  Many in-

stitutional managers use the value-weighted average price (VWAP) as their benchmark price in 

evaluating trade performance.  Consistent with this, some traders attempt to realize VWAP by 

using a simple break-up strategy, submitting equal-size pieces over the trading day.  Our findings 

suggest that this strategy is suboptimal; efforts to take advantage of time-varying liquidity may 

result in substantially better executions.  These results are precisely what were expected given 

the evidence on nonlinearity of the demand and supply schedules illustrated in Figure 1. 

Interestingly, many crosses do not go down at the midpoint.  The crosses are often at the 

bid or offer, as is obvious from the nonzero price impacts reported in table 3.  Crossing away 

from the midquote does not save much money relative to doing the trade directly with the book, 

except for large-block trades of 90 contracts or more.  Crosses are often done in the morning, and 

the  relatively thin book at the opening provides an obvious rationale for off-exchange dealing.  

On the other hand, an even greater number of crosses are executed towards the close, with a very 

thick book, perhaps because traders are concerned that they might not be able to execute a large 

block trade with little time remaining in the trading day.  This is consistent with the evidence on 

the proportion of block transactions in the US equity market, which also diminishes sharply at 

the end of the day. 

4.3. Strategic Order Placement Behavior 

 The difference between hypothetical and actual price impacts confirms the existence of 

discretionary timing, and is consistent with strategic behavior on the part of traders.  All theories 

relating to discretionary trading then predict that traders time purchases and sales for periods 

when the market is especially deep, avoiding those periods when market depth is low.  If so, the 

pooling of liquidity should result in markets in which depth is associated with more trades and 

larger trade size.   

 Confirmation that trading activity is indeed positively related to liquidity requires some 

control for other factors that may affect activity.  With regards to trading activity, a natural ob-

ject of interest is trading frequency.  Since this variable is discrete and can take on the value 0, 

we model trading activity using a Poisson model.  Let N denote the number of trades in a five 
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minute interval and X denote a vector of explanatory variables.  Then, with Xβλ ′=)ln( , the 

Poisson model is: 

 ,...2,1,0;
!

]|Pr[ ===
−

n
n

enN
nλλ

X , (2) 

 We estimate this model separately for buys and sells.  Table 4 contains coefficients and 

standard errors (in parentheses) for Poisson models of trade arrivals for buyer-initiated and 

seller-initiated trades.  Estimates are computed by maximum likelihood techniques, based on 5-

minute intervals over 105 trading days.  The vector X includes a constant, the number of trade 

arrivals on the opposite side of the market (“side”), returns (measured as change in the mid-

quote), open and close dummies, depth of the market up to six ticks away from the midquote, 

and the effective spread, computed for trade sizes of 20 contracts. All estimated coefficients are 

statistically significant for both sides, and are of the expected sign. 

 Trading activity is positively related to depth and negatively related to spreads; both have 

economically and statistically significant effects.  Taken together as measures of liquidity, both 

results reinforce the hypotheses stemming from discretionary entry into the market.  An increase 

in order arrivals on the opposite side of the market implies greater activity.  The finding high-

lights the theoretical prediction of Scharfstein and Stein (1990), that high contraside order flows 

generate entry on the other side of the market, consistent with greater pressures to trade quickly.    

 The coefficient estimates for returns are consistent with the hypothesis that traders place 

buy orders following market dips and sell following price upturns. Further, as traders observe 

upwards price pressure, they tend to place more sell-side orders at prices away from the best 

quotes, accounting for part of the result. Open and close dummies are positive.  There is nothing 

new about this result, since it is consistent with the well-known U-shaped volume pattern ob-

served in other markets.  Taken together many other studies over many markets, the finding sug-

gests that market structure has little influence on the informational and behavior influences lead-

ing to U-shaped activity over the course of the trading day. 

 

5. Dynamics of Liquidity and Returns 

 We now turn to an investigation of the dynamics of market liquidity and its time-varying 

effect on returns, and vice versa.  The method of analysis is reminiscent of Hasbrouck's (1991) 
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examination of specialist quote setting.  The goal in that paper is to relate specialist quote revi-

sions to trades, modeled as empirically signed volume.  In doing so, Hasbrouck identifies the ef-

fects of random trade innovations on quote revisions, and interprets a measure of the expected 

cumulative quote revision as an index of private information.  The measure used is the impulse 

response function of a bivariate vector autoregression.   

There is no specialist in a limit order book market, and the changes in midquote prices 

used by Hasbrouck (1991) are more naturally interpreted here as returns to trading activity. Our 

interest centers upon the interplay between liquidity and prices, and in the dynamic relationship 

between liquidity characteristics on opposite sides of the market.   

Throughout our discussion we use market depth as our measure of liquidity and change 

in midquotes as a proxy for returns.  Our conclusions also hold for other metrics of liquidity in-

cluding price impacts.  As in Hasbrouck (1991), a generalized vector autoregression framework 

is used, and we first turn to the assumptions underlying our particular model. 

5.1 Identification and the Statistical Model  

 We begin with the following complete dynamic system or structural model, 

 , (3) t

q

s
stst YBRY ν+=∑

=
−

1

where Yt and vt are vectors and R and Bs, s=1,…q, are matrices.  This is closely related to a re-

duced form model,  

 , (4) ∑
=

− +=
q

s
tstst YAY

1
η

where As = R-1Bs and R-1νt. 

 Use of the complete dynamic system, as opposed to simply the reduced form, has two 

main advantages.  First, estimates of the complete model also include contemporaneous influ-

ences, permitting description of current period effects on market liquidity itself.  Second, it per-

mits explicit delineation of the identification conditions required to isolate shocks to market li-

quidity.  These conditions often are hidden in the estimation of the reduced form alone, confus-

ing inference with respect to the shocks of interest.15 

                                                 
15 There is a large literature devoted to this point, starting with Sims (1986) and explicated in more detail in Hamil-
ton (1994). 
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 In terms of estimation, the difficulty often encountered in structural estimation is that 

there are more parameters than moments.  Therefore, we have to make meaningful restrictions in 

order to identify R and Bs.  The identification conditions chosen here are expressed in terms of 

the variance-covariance matrix of νt and the elements of the matrices R and Bs.  Identification is 

similar to that of a Wold causal chain.16  In our case, the covariance matrix of the structural error 

is block diagonal, restrictions are imposed on R such that the matrix is block triangular, and re-

turns follow a unit root process by a restriction imposed on B1 ≡ B.  We make the latter assump-

tions explicit below, once the elements of Y have been specified. 

5.2 Specification and Estimation of Market Liquidity Dynamics 

 Our primary interest, beyond a characterization of the dynamics of liquidity, is in the dy-

namic relationship of returns with depth.  We therefore specify the vector Yt as (Dbt, Dat, ∆mt)’, 

where ∆mt is the change in the quote midpoint, and depth on the bid and sell side, Dbt, Dat, are 

six ticks away.  A variety of additional elements of Y suggest themselves, but we found that 

depth at six ticks away to be the most representative.   

 Theoretical treatments of the relationship between liquidity and returns are essentially 

static in nature. Our approach to identification is therefore empirical, using elements of the tech-

niques in Swanson and Granger (1997) and Sims (1986).  The combination of techniques in-

volves the use of different identification schemes, each allowing the assessment of the strength 

of various correlations among the variables.  The scheme below represents a choice based on this 

procedure, but also is intuitively plausible in nature. 

 The variance-covariance matrix of the structural error vector is taken to be block diago-

nal.  In particular, it is assumed that shocks to liquidity on the bid and offer sides of the market 

are contemporaneously correlated. Returns are assumed to be uncorrelated, which is supported 

by the data.  Lag lengths are truncated at s = 1. The matrix of contemporaneous effects, R, is 

specified as 

 . (5) 















−
−

=
100

10
01
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13
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ρ
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16 See, for example, Sims (1986). 
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The matrix of lagged effects, B, is unrestricted, with the exception of the coefficient on lagged 

returns, which is set to zero. 

 The combination of restrictions has the following economic intuition.  Neither bid nor of-

fer side depth contemporaneously affect returns.  This has some intuitive appeal, in that depth is 

a function of bids and offers, which naturally precede transactions.  As such, bid and offer depth 

should affect returns in the next period, if at all, which is allowed by the specification.  Similarly, 

depth on one side of the market does not contemporaneously affect depth on the other side, but 

does so with a lag.  Identification schemes that permit estimation of contemporaneous effects of 

depth on returns and side of the market yield economically and statistically insignificant R-

matrix coefficients.17  On the other hand, the model assumes that shocks to depth on the bid and 

offer sides of the market are correlated, since such shocks may derive from the same source of 

market information. 

 The specification permits a contemporaneous effect of returns on depth in both sides of 

the market.  Price movements influence the current submission of bids, offers, and cancellations, 

reflected in the depth measures.  Prior returns also have an influence on current depth in the 

specification.  The inclusion of both contemporaneous and lagged effects permits a test as to 

whether discretionary behavior, manifested through returns, has any instantaneous or lagged 

feedback into liquidity provision.  The relative strength of the contemporaneous and lagged in-

fluences of returns on liquidity is an empirical question.   

 Based on the above identification conditions, equation (3) is estimated by method of 

moments, and the standard errors are computed using the usual GMM form.  Results are reported 

in table 5 for liquidity measured in terms of number of contracts available at six ticks away from 

the quote midpoint.  

 The liquidity clustering predicted by Admati and Pfleiderer (1988) is clearly evident from 

the estimates and standard errors.  The first-order serial correlation of depth with lagged depth 

ranges from 0.33 to 0.38 and is very precisely estimated.  The correlation of depth on the offer 

side with lagged buy side liquidity is 0.04, and statistically significantly different from zero.  Al-

though this coefficient, and that relating lagged sell side liquidity to current buy side depth, are 

                                                 
17 Hasbrouck (1991) maintains a timing convention where trades contemporaneously influence quote revisions, but 
not vice versa.  The cited test suggests that the same interpretation cannot be used here, and we use the opposite tim-
ing convention for liquidity and returns. 
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economically small, the results do suggest not only that the liquidity clustering hypothesis holds 

even across buy and sell sides, but also that the entry predictions of Scharfstein and Stein (1990) 

and Spiegel and Subrahmanyam (1995) appear to hold.  We investigate the last point further in 

the context of the impulse response functions.  

 The contemporaneous impacts of returns on market depth are symmetric and different 

from zero at any reasonable level of statistical significance.  As returns rise, liquidity increases 

on the offer side of the market and falls on the bid side.  Lagged returns are both economically 

and statistically insignificantly different from zero in terms of their effect on liquidity. 

  These results clearly do not derive from the mechanics of a limit order book market.  

Simple mechanics would imply that buying pressure increases depth on the buy side, at least for 

prices at or very near the best quote, for example.  Such results would be expected only for depth 

measured in terms of number of contracts available very close to the quote midpoint.  In fact, this 

empirical phenomenon is observed only for depth measured at two ticks away from the midpoint 

in our sample.18 

 The findings have an interpretation consistent with the results on management of transac-

tions costs.  An increase in prices occurs due to pressure on the buy side of the market.  Some 

sellers may simply hit the bid in a rising market, reducing depth at the top of the book on the bid 

side, but this is relatively costly.  Generally, buying pressure implies that buyers must pick con-

tracts off the offer curve in order to achieve execution. Stale bids below the best quote are can-

celled, further reducing bid-side liquidity.  The response of sellers is to put in offers at prices 

higher than the prevailing best offer quote in the market.  As a result, liquidity on the offer side 

rises, as returns go up. In a rising market, this order placement behavior achieves savings in 

transactions costs due to price impact.   

 Conversely, decreases in liquidity on the bid side, and increases in liquidity on the offer 

side, are associated with larger returns, but with a lag. The observed relationship suggests that 

the effect of liquidity shocks upon returns is dynamic and potentially persistent, and we now turn 

to an analysis of the interplay between the two over time. 

                                                 
18 An example of when this phenomenon could be mechanical is the following.  Suppose the best offer was at price 
100 for 10 contracts, but an order came in wanting 20 contracts at price 100.  In this case, 10 contracts would be 
traded, and the best bid would now be 10 contracts at 100.  Given this, it is possible to construct a scenario where 
the spread actually decreases, depth on the sell side increases, and depth on the bid side decreases.  But we found 
little evidence of this occurring here. 
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5.3. Impulse Response Functions 

The dynamic responses of returns to market liquidity shocks, and those of depth on one 

side of the market to shocks on the other side, are computed based on the estimated version of 

equation (3) specified by full simultaneous equations model, 

 . (6)  t

q

s
stst RYBRY ν̂ˆˆˆ 1

1

1 −

=
−

− +=∑

This autoregression is transformed into its infinite order vector moving average representation, 

through the device of matching moments.19  The moving average representation is then used to 

generate the impulse response functions. 

 Table 6 contains results for shocks to liquidity and returns, illustrated graphically in Fig-

ure 2.  Results are presented for shocks to liquidity on the bid side (panel A), on the offer side 

(panel B), and for shocks to midquote returns (panel C).  Dynamic responses are given for the 

first five minutes, as well as average responses over time periods following the initial shock, up 

to 60 minutes.  Shocks to market liquidity consist of an increase in depth of 30 contracts.  Shocks 

to returns are in units of 5 ticks.20  Responses for liquidity are measured in terms of number of 

contracts; those for spreads and returns are given in terms of ticks. 

 Shocks to liquidity on the offer side of the market tend to lower returns, while increases 

in liquidity on the bid side raise them.  Given that the market structure explicitly mimics the in-

teraction between supply and demand, the result is intuitively plausible.  A positive shock to li-

quidity on the bid side produces the analogue of a demand-side imbalance.  If the market equili-

brates itself through an implicit calculation of a Walrasian equilibrium, prices rise, and returns 

are positive.  This effect has been observed in experimental studies of limit order markets.21   

 The effects are short-lived, in that virtually all of the impact occurs during the first 10 

minutes following the liquidity event. The response of returns with respect to a liquidity shock 

also is moderate in magnitude.  A simple calculation shows, for example, that an increase in bid 

depth of 62 contracts, or roughly two standard deviations, is required to increase returns by a sin-

                                                 
19 See Hamilton (1994, chapter 11). 
20 The precise scaling is immaterial, given the linearity of the system. A shock of 90 contracts to depth, for example, 
results in a response that is 3 times what is given in the table. The size of the shocks illustrated here was chosen to 
be approximately one standard deviation.   
21 Unpublished results, gathered from personal communication with Charles Plott at the California Institute of 
Technology.  See http://eeps.caltech.edu/ under “animations” for description of the experiments and results.  
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single standard deviation.22  On an annualized return basis, these impacts are much larger, of 

course.   

 An increase in liquidity on one side of the market leads to a rise in liquidity on the other 

side.  Interpreted as a form of liquidity clustering, the result is confirmatory of the predictions of 

Admati and Pfleiderer (1988) with respect to discretionary timing of trading activity.  Alterna-

tively, the findings support the predictions of Spiegel and Subrahmanyam (1995) and Scharfstein 

and Stein (1990).  In those papers, herding behavior also involves entry on the opposite side of 

the market, given increases in order flow activity. 

6. Volatility 

 It is generally assumed that increased market liquidity is associated with lower volatility, 

and vice versa.  Such a prediction also follows naturally from the theories relating to discretion-

ary timing of trades.  On the other hand, there is little direct empirical evidence on this point, to 

the best of our knowledge.  Rather, trading volume and the absolute value of price changes are 

commonly found to be positively correlated, and there is some evidence that the volatil-

ity/volume correlation extends to common factors in prices and volumes.23  We now extend the 

investigation of the last section to include an analysis of the dynamic interactions between depth 

on the order book, effective spreads, and volatility. 

6.1.  Regression Results 

 Volatility is easily captured in our present framework.  We redefine the vector Yt in equa-

tion (3) as (Dbt, Dat, |∆m|t)′, where |∆m|t is the absolute value of the change in the quote midpoint.  

The same identification scheme is employed as before.  The correlation of current and lagged ab-

solute returns is left unrestricted, however, following the large literature on volatility clustering.  

Results are reported in table 7 for liquidity measured in terms of number of contracts available at 

six ticks away from the quote midpoint.  

                                                 
22 The standard deviation of returns is 5.185 ticks, the measured response is 2.513, and  (5.185/2.513) = 2.063, 
times 30 contracts is 62.  Other calculations summarized in text are done similarly. 
23 See, for example, Karpoff (1987), Gallant, Rossi, and Tauchen (1992), and Hasbrouck and Seppi (1999). 
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Volatility has a contemporaneous, statistically significant negative effect on liquidity, re-

gardless of side of market.24 The result stands in sharp contrast to the typically trading vol-

ume/volatility relationship, in which the positive correlation between variables typically is at-

tributable to information effects (e.g., Blume, Easley, and O’Hara (1994)).  In an open limit or-

der book system, higher volatility increases the value of the free option stemming from liquidity 

provision to the order book. Periods of higher information intensity and concomitant higher vola-

tility increase the likelihood of adverse selection, and adverse selection effects have been found 

to be large in electronic markets.25  In both cases, the incentive to provide liquidity to the book in 

the form of limit orders decreases, and market liquidity falls.  The good news is that the effects 

on liquidity are relatively short-lived, so that the market self-corrects.  In other words, while our 

results on liquidity might be taken as an argument for a trading halt, the natural resiliency of the 

market obviates this measure. 

Conversely, increases in market liquidity lower future price volatility.  The result is intui-

tively plausible, and consistent with the findings of Bollerslev and Domowitz (1991) in their in-

vestigation of the relationship between volatility dynamics and generic order book systems.  The 

effects are economically larger, and statistically significant, on the bid side of the market, rela-

tive to the offer side. The difference might be thought to represent variability in this particular 

sample, since there is no obvious reason for a disparity.  On the other hand, the literature on trad-

ing costs suggests that costs are substantially higher for sells than for buys in both traditional 

market structure (Keim and Madhavan (1998)) and electronic venues (Domowitz and 

Steil(1999)).  Evidence from these cost studies is consistent with the fact that volatility does not 

respond significantly to offer-side depth, remaining relatively high even when the market is rela-

tively deep on the sell side. 

6.2. The Dynamic Relationship Between Liquidity and Volatility  

The dynamic responses of shocks to liquidity and volatility are summarized in table 8 and 

Figure 3, for liquidity defined in terms of number of contracts 6 ticks away from the midquote.  

As in the previous analysis, we report the initial 5-minute effect, as well as averages over subpe-

riods within the hour following the shocks.  The magnitude of the shocks to liquidity is as dis-

                                                 
24 The effects of lagged volatility on depth are economically negligible and statistically insignificantly different 
from zero. 
25 See Kofman and Moser (1997) and Coppejans and Domowitz (1999). 
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cussed previously.  Shocks to volatility represent an increase of 5 ticks, or about 0.1 percent of 

contract value.26 

Increases in market liquidity lower volatility. The volatility impacts of the liquidity 

shocks die away quickly, with the responses over the 15 to 25 minute interval being only 16 to 

18 percent of the average impacts over the first 10 minutes. The standard deviation of volatility 

is about 3.5, and the 5-minute impact is –1.619, so a shock of (3.5/1.619)×30 or 65 contracts to 

depth is required to move volatility by one standard deviation.  Shocks to liquidity on one side of 

the market move the other side of the market in the same direction as the initial shock. These re-

sults are unsurprisingly similar to those obtained using the structural VAR system incorporating 

midquote returns.  

 Shocks to volatility not only have a contemporaneous effect on liquidity, but also a more 

persistent effect over time.  Higher volatility clearly decreases liquidity over the hour following 

the shock. The effects are especially strong only in the first 10 minutes following the volatility 

event, consistent with our overall findings of high natural market resiliency.  Further, the magni-

tude of the effect of a volatility shock is relatively small.  An increase in volatility of 5 percent of 

value decreases bid depth by only 14 contracts, for example, less than the average trade size. 

7. Conclusion 

 The rapid adoption of electronic limit order book systems (or automated auctions) for eq-

uities, derivatives, and bonds worldwide has generated considerable practitioner and academic 

interest in the operation of such markets.  In particular, many questions concern the nature and 

characteristics of liquidity in automated systems because of their reliance on public limit orders.  

This paper analyzes the dynamic links between market liquidity, order placement behavior, and 

returns in an electronic limit order book market.  The study also examines questions of interest 

beyond those relating to the precise structure of an automated auction.  In particular, the nature 

of data availability has allowed us to confirm several theoretical predictions, previously unex-

plored, while raising theoretical issues regarding the interaction between liquidity and discre-

tionary trading activity, that are as yet untreated. 

                                                 
26 Average 5-minute volatility over the estimation period is 3.67 ticks, with a standard deviation of 3.6 ticks.  A 
move of two standard deviations is approximately the size of the average bid-ask spread. 
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 We construct measures of liquidity and market depth using natural metrics from the limit 

order book.  These measures vary widely over time, suggesting that traders can add value by 

strategic order placement behavior.  We document evidence in favor of this hypothesis.  Specifi-

cally, the actual execution costs are significantly lower that the costs that would be incurred un-

der a naïve strategy that fails to account for time-variation in liquidity.  Cost differences are es-

pecially pronounced for larger trades.  A simple trade frequency model supports our view that 

discretionary traders trade in high liquidity periods, reinforcing the concentration of volume and 

liquidity at certain points in time.  Taken as a whole, the findings confirm the predictions of sev-

eral models of discretionary trading behavior.  Even the sharp result of Mendelson and Tunca 

(2000), that realized trading costs should be equalized over trade size, is confirmed by the data.  

 We examine the dynamic relation between measures of liquidity and short-horizon ex-

pected returns using structural vector autoregressive models.  We find a high degree of autocor-

relation in liquidity, consistent with liquidity clustering predicted by theoretical models.  Time 

series dynamics are more complex than in previous analyses.  There is, for instance, dynamic 

feedback from trading activity to liquidity, a feature missing from theoretical models and sug-

gesting a new line of research.  The dynamic interaction between volatility and liquidity is inves-

tigated using a similar dynamic framework.  The use of liquidity metrics based on supply and 

demand curves inherent in the market structure allows for results that go beyond those available 

for inside-spreads, for example, and that stand in contrast to well-known volume-volatility rela-

tionships.  Positive liquidity shocks reduce volatility.  While short-lived, this effect is relatively 

large in magnitude.  Volatility shocks reduce liquidity, supporting arguments for trading halts 

following sharp market movements.  On the other hand, impulse response functions show that 

shocks to liquidity dissipate quickly, indicating a high degree of resiliency.  Natural market resil-

iency also is suggested by the small magnitudes of the impact of large volatility shocks on mar-

ket depth.  This “self-correcting” ability of the automated auction is an important element of this 

mechanism’s success, and belies arguments that the “free option” problem is potentially fatal 

with respect to automated market viability. 
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Table 1 
Average Depth of the Book by Tick, Time and Side 

 
This table contains summary statistics relating to the depth of the order book, in number of con-
tracts, by time of day, averaged over 105 trading days.  Data for the bid side appears in Panel A, 
and data for the offer side appears in Panel B.  Column headings indicate the number of ticks 
away from the midpoint of the best quote in the market at the time.  The figures reported are the 
number of contracts available at or below that number of ticks away from the midquote.  Num-
bers in parentheses are the probability, in percent, of observing volume at the indicated number 
of ticks away from the midquote.  Numbers in brackets are the standard deviation, in number of 
contracts, of depth over the full sample. 
 
 Panel A: Bid side of the book 

Time  4 6 8 10 12 16 20 
9:15  12 25 37 48 58 77 86 

         
10:15  26 42 58 84 109 140 143 

         
12:15  21 37 56 80 103 129 137 

         
14:15  25 38 58 77 102 130 137 

         
15:00  31 50 63 82 95 117 124 

 
 

 
Panel B: Offer side of the book 

Time  4 6 8 10 12 16 20 
9:15  12 24 33 47 60 79 92 

         
10:15  28 42 60 81 108 139 145 

         
12:15  18 33 50 68 92 126 132 

         
14:15  26 40 56 77 102 127 133 

         
15:00  27 46 58 77 94 113 122 
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Table 2 
Hypothetical Price Impacts by Time of Day 

 
This table contains the price impact of trades, reported in percentage terms relative to the quote 
midpoint, by time of day.  Calculations are done for hypothetical trades of 10 to 100 contracts in 
increments of 10, compared with the observed order book at a specific time of day, averaged 
over 105 trading days.  Figures in the row marked “average” are computed based on computa-
tions at 15 minute intervals over the trading day, averaged over intervals and trading days.  Panel 
A contains data for transactions at the bid, and Panel B contains figures for transactions at the of-
fer. Trades at the bid are necessarily negative, and the absolute value is reported here. 
   
Panel A: Bid Transactions 
 

Time 10 20 30 40 50 60 70 80 90 100 
           

9:15 0.08 0.09 0.10 0.12 0.13 0.14 0.15 0.16 0.17 0.19 
           

10:15 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.12 0.13 0.14 
           

12:15 0.07 0.08 0.09 0.10 0.11 0.12 0.12 0.13 0.14 0.15 
           

14:15 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 
           

15:00 0.06 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 
           

Average 0.07 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 
 
Panel B: Offer Transactions 
 

Time 10 20 30 40 50 60 70 80 90 100 
           

9:15 0.08 0.10 0.11 0.12 0.13 0.14 0.15 0.17 0.18 0.19 
           

10:15 0.06 0.07 0.08 0.08 0.10 0.11 0.12 0.12 0.13 0.14 
           

12:15 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.15 
           

14:15 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 
           

15:00 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 
           

Average 0.07 0.07 0.09 0.10 0.10 0.11 0.12 0.13 0.14 0.15 
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Table 3 
Actual Price Impacts by Time of Day 

 
This table contains the price impact of trades, reported in percentage terms relative to the quote 
midpoint, broken down by time of day, by side (bid or offer), and for regular trades and crosses.    
Calculations are done for actual  trades of 10 to 100 contracts in increments of 10, compared 
with the observed order book at the time of trade, over 105 trading days.   Trades at the bid are 
necessarily negative, and the absolute value is reported here. 
 
 

 10 20 30 40 50 60 70 80 90 100 
           

Bid Side 0.04 0.04 0.04 0.04 0.05 0.05 0.04 0.04 0.06 0.04 
           
Offer Side  0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.07 
           
Cross Bid ----- ----- 0.05 0.04 0.05 0.05 0.05 0.07 0.03 0.05 
           
Cross Offer ----- ----- 0.04 0.05 0.05 0.04 0.06 0.06 0.02 0.05 
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 Table 4 
Poisson Models of Trade Arrivals 

 
This table contains coefficients and standard errors (in parentheses) for Poisson models of trade 
arrivals for buyer-initiated and seller-initiated trades. Estimates are computed based on 5-minute 
intervals over 105 trading days.  The specification of the conditional mean is E[y|X] = exp(β‘X), 
where y is the number of trades in a five minute period and X denotes the vector of explanatory 
variables. The vector includes a constant, the number of trade arrivals on the opposite side of the 
market (“side”), returns (measured as change in the midquote), open and close dummies, depth 
of the market up to six ticks away from the midquote, and the effective spread, computed for 
trade sizes of 20 contracts. 
 

 Buy-side Sell-side 

Constant 0.401 0.456 
 (0.058) (0.055) 

Side 0.054 0.066 
 (0.005) (0.005) 

Return -0.099 0.106 
 (0.003) (0.004) 

Open 0.373 0.356 
 (0.047) (0.045) 

Close 0.227 0.310 
 (0.040) (0.041) 

Depth 0.024 0.028 
 (0.005) (0.005) 

Effective Spread -0.006 -0.006 
 (0.002) (0.002) 

R2 0.147 0.165 
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Table 5 
Coefficient Estimates for the Model of Depth and Returns 

 
This table contains estimates of the dynamic simultaneous equations model, 

ttt BYRY ν+= −1 , 
in which Yt = (Dbt, Dat, ∆mt)’, where ∆mt is the change in the quote midpoint, Dbt is depth of mar-
ket, measured in lots of 10 contracts on the bid side of the order book at 6 ticks away from the 
quote midpoint, and Dat is the same measure, computed for the offer side of the book.  The ma-
trix, R, is given by 
















−
−

=
100

10
01

23

13

ρ
ρ

R  

Figures in the table are coefficient estimates (GMM robust standard errors in parentheses) for the 
regression of each of the elements of Yt (column headings) on the variables in the left hand col-
umn.  Estimation is based on 5-minute intervals. 
 

 Bid depth Offer depth ∆midquote 

Constant 2.344 2.345 -0.192 

 (0.065) (0.067) (0.131) 

∆midquotet -0.027 0.033 -------- 

 (0.007) (0.007)  

Bid deptht-1 0.384 0.035 0.084 

 (0.017) (0.012) (0.021) 

Offer deptht-1 0.016 0.326 -0.058 

 (0.012) (0.018) (0.022) 

∆midquotet-1 0.008 -0.003 -------- 

 (0.005) (0.006)  
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Table 6 
Dynamic Responses to Shocks in Depth and Returns 

 
This table contains the dynamic responses (impulse response function estimates) of bid-side 
depth, offer-side depth, and midquote returns, to shocks to market depth on the buy side (Panel 
A), market depth on the sell side (Panel B), and returns (Panel C). Depth of market is measured 
in number of contracts on bid and offer sides of the order book at 6 ticks away from the quote 
midpoint. Calculations are based on five-minute intervals, and use coefficient estimates of a 
complete dynamic simultaneous equations model, also estimated over 5-minute periods.  Figures 
in the first row, labeled “5 minutes” are responses to the initial shock.  The remainder of the 
rows give figures for average effects over the interval indicated (e.g., 15-25 minutes is the re-
sponse calculated for five minute periods, starting at 15 minutes and ending at 25 minutes, aver-
aged over the period).  Depth responses are given in number of contracts.  Return responses are 
given in number of ticks.  
 

Panel A:  30 Contract Shock to Depth on Bid Side 

 Bid depth Offer depth ∆midquote 

5 minutes 11.46 1.122 2.513 

5-10   minutes 7.920 0.951 1.704 

15-25 minutes 0.878 0.240 0.162 

30-60 minutes 0.030 0.009 0.005 

 

Panel B:  30 Contract Shock to Depth on Offer Side 

 Bid depth Offer depth ∆midquote 

5 minutes 0.534 9.720 -1.734 

5-10   minutes 0.450 6.452 -1.125 

15-25 minutes 0.108 0.503 -0.071 

30-60 minutes 0.003 0.009 -0.000 
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Panel C:  5 Tick Shock to Midquote Returns 

 Bid depth Offer depth ∆midquote 

5 minutes -0.008 0.036 -0.021 

5-10   minutes -0.006 0.024 -0.012 

15-25 minutes -0.000 0.002 -0.000 

30-60 minutes -0.000 0.000 -0.000 
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Table 7 
Coefficient Estimates for the Model of Depth and Volatility 

 
This table contains estimates of the dynamic simultaneous equations model, 

ttt BYRY ν+= −1 , 
in which Yt = (Dbt, Dat, |∆mt|)’, where |∆mt| is volatility, measured as the absolute value of the 
change in the quote midpoint, Dbt is depth of market, measured in lots of 10 contracts on the bid 
side of the order book at 6 ticks away from the quote midpoint, and Dat is the same measure, 
computed for the offer side of the book.  The matrix, R, is given by 








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


−
−

=
100

10
01

23

13

ρ
ρ

R  

Figures in the table are coefficient estimates (GMM robust standard errors in parentheses) for the 
regression of each of the elements of Yt (column headings) on the variables in the left-hand col-
umn.  Estimation is based on 5-minute intervals. 
 

 Bid depth Offer depth |∆midquote| 

Constant 2.730 2.626 3.247 

 (0.084) (0.087) (0.114) 

|∆midquote|t -0.085 -0.070 -------- 

 (0.010) (0.010)  

Bid deptht-1 0.373 0.032 -0.054 

 (0.017) (0.012) (0.015) 

Offer deptht-1 0.146 0.321 -0.021 

 (0.012) (0.017) (0.015) 

|∆midquote|t-1 -0.006 0.001 0.193 

 (0.008) (0.008) (0.019) 
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Table 8 
Dynamic Responses to Shocks in Depth and Volatility 

 
This table contains the dynamic responses (impulse response function estimates) of bid-side 
depth, offer-side depth, and volatility, measured as the absolute value of midquote returns, to 
shocks to market depth on the buy side (Panel A), market depth on the sell side (Panel B), and 
volatility (Panel C).  Calculations are based on five-minute intervals, and use coefficient esti-
mates of a complete dynamic simultaneous equations model, also estimated over 5-minute peri-
ods.  Figures in the first row, labeled “5 minutes” are responses to the initial shock.  The remain-
der of the rows give figures for average effects over the interval indicated (e.g., 15-25 minutes is 
the response calculated for five minute periods, starting at 15 minutes and ending at 25 minutes, 
averaged over the period).  Depth responses are given in number of contracts.  Volatility re-
sponses are given in number of ticks. 
 

Panel A: 30 Contract Shock to Depth on Bid Side 

 Bid depth Offer depth |∆midquote| 

5 minutes 11.33 1.068 -1.619 

5-10   minutes 7.833 0.915 -1.283 

15-25 minutes 0.855 0.234 -0.230 

30-60 minutes 0.023 0.009 -0.008 

 

Panel B: 30 Contract Shock to Depth on Offer Side 

 Bid depth Offer depth |∆midquote| 

5 minutes 0.492 9.678 -0.639 

5-10   minutes 0.426 6.411 -0.497 

15-25 minutes 0.111 0.495 -0.081 

30-60 minutes 0.005 0.009 -0.002 

 

 

Panel C:  10 Tick Shock to Volatility 
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 Bid depth Offer depth |∆midquote| 

5 minutes -0.280 -0.191 0.996 

5-10   minutes -0.206 -0.184 0.604 

15-25 minutes -0.029 -0.018 0.023 

30-60 minutes -0.001 -0.000 0.000 
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Figure 1:  Linear and nonlinear estimates of average depth, based on a fifth degree polynomial 
approximation.  The darker line is the bid side, and the lighter line is the ask side. 
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Figure 2:  Impulse Responses to Shocks in Depth and Returns.  Dotted line is returns, darker 
solid line is bid side depth, and lighter solid line is ask side depth.  Own effects represents the ef-
fect of a shock on bid side depth, ask side depth, and returns on bid side depth, ask side depth, 
and returns, respectively.  The three other plots capture the remaining responses.  For example, 
the plot Bid Side represents the effects on ask side depth and returns given that bid side depth 
has been shocked.  The plots Ask Side and Returns are defined analogously.  Note that the dots 
and the dashes on the horizontal axis are in increments of five minutes.  Shocks to depth are in 
units of 30 contracts; shocks to returns are in units of 5 ticks. 

 34

 

 



 

Own Effects

0

5

10

15

20

25

30

0 10 20 30 40 50

Minutes

R
es

po
ns

e

Bid Side

-1.75

-1.25

-0.75

-0.25

0.25

0.75

1.25

0 10 20 30 40 50

Minutes

R
es

po
ns

e
 
 

Volatility

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0
0 10 20 30 40 50

Minutes

R
es

po
ns

e

Ask Side

-0.75

-0.55

-0.35

-0.15

0.05

0.25

0.45

0 10 20 30 40 50

Minutes

R
es

po
ns

e

 
Figure 3:  Impulse Responses to Shocks in Depth and Volatility.  Dotted line is volatility, darker 
solid line is bid side depth, and lighter solid line is ask side depth.  Own effects represents the ef-
fect of a shock on bid side depth, ask side depth, and volatility on bid side depth, ask side depth, 
and volatility, respectively.  The three other plots capture the remaining responses.  For example, 
the plot Bid Side represents the effects on ask side depth and volatility given that bid side depth 
has been shocked.  The plots Ask Side and Volatility are defined analogously.  Note that the dots 
and the dashes on the horizontal axis are in increments of five minutes. Shocks to depth are in 
units of 30 contracts; shocks to volatility are in units of 5 ticks. 
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