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SUMMARY

This paper presents a method for replicating or hedging a target
stock option with a portfolio of other options. It shows how to con-
struct a replicating portfolio of standard options with varying strikes
and maturities and fixed portfolio weights. Once constructed, this
portfolio will replicate the value of the target option for a wide range
of stock prices and times before expiration, without requiring further
weight adjustments. We call this method static replication. It makes
no assumptions beyond those of standard options theory.

You can use the technique to construct static hedges for exotic
options, thereby minimizing dynamic hedging risk and costs. You can
use it to structure exotic payoffs from standard options. Finally, you
can use it as an aid in valuing exotic options, since it lets you approx-
imately decompose the exotic option into a portfolio of standard
options whose market prices and bid-ask spreads may be better
known.

Replicating an Exotic Option with a Portfolio of Standard Options.

Option Value Replicating Portfolio VValue

The figure above, taken from an example in this paper, illustrates
how the technique works. The graph on the left shows the value of a
one-year up-and-out call, struck at 100 with out-barrier at 120, for all
times to expiration and for market levels between 90 and 120. The
graph on the right shows the value of a replicating portfolio con-
structed from seven standard options, struck either at 100 or 120,
and expiring every two months over the one-year period. You can see
that the replicating portfolio value approximately matches the target
option value over a large range of times and stock prices, and has the
same general behavior. The more standard options you include in the
replicating portfolio, the better the match.
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INTRODUCTION

According to the Black-Scholes theory?, a stock option at any instant
behaves like a weighted portfolio of risky stock and riskless zero-cou-
pon bonds. The Black-Scholes options formula tells you how to calcu-
late the portfolio weights. They depend on the stock price level, the
stock dividend yield, the stock volatility, the riskless interest rate and
the time to expiration.

Instead of owning an option, you can in principle own a portfolio of
stock and riskless bonds, and achieve exactly the same returns. To do
s0, you must continuously adjust the weights in your portfolio accord-
ing to the formula as time passes and/or the stock price moves. This
portfolio is called the dynamic replicating portfolio. Options traders
ordinarily hedge options by shorting the dynamic replicating portfo-
lio against a long position in the option to eliminate all the risk
related to stock price movement.

There are two difficulties with this hedging method. First, continuous
weight adjustment is impossible, and so traders adjust at discrete
intervals. This causes small errors that compound over the life of the
option, and result in replication whose accuracy increases with the
frequency of hedging. Second, there are transaction costs associated
with adjusting the portfolio weights which grow with the frequency of
adjustment and can overwhelm the profit margin of the option. Trad-
ers have to compromise between the accuracy and cost.

In this paper we describe a method of options replication that
bypasses some of these difficulties. Given some particular target
option, we show how to construct a portfolio of standard options, with
varying strikes and maturities and fixed weights that will not require
any further adjustment and will exactly replicate the value of the
target option for a chosen range of future times and market levels. We
call this portfolio the static replicating portfolio.

Our method relies only on the standard assumptions behind the
Black-Scholes theory. Therefore, the value and sensitivities of the
static replicating portfolio are equal to the usual theoretical value
and sensitivities of the target option. You can use this static replicat-
ing portfolio to hedge or replicate the target option as time passes
and the stock price changes. By increasing the number of options in

the static portfolio, you can achieve better replication. The costs? of

1. F. Black and M. Scholes, The Pricing of Options and Corporate Liabilities, Journal
of Political Economy, 81 (May-June 1973), 637-54.

2. We will consider costs in a future paper.




gsdpman

QUANTITATIVE STRATEGIES RESEARCH NOTES

replication and transaction are embedded in the market prices of the
standard options employed in replication.

In this paper we apply the method only to options with one underly-
ing stock. A similar extension to options with multiple underlyers is
possible, but more involved.

The static approach to options replication is useful in diverse areas,
some of which we list below:

1. Trading

You can use static replication to avoid the practical difficulties and
costs involved in dynamically hedging an options position. You can
hedge long-term options with portfolios of short-term options, or
exotic options with portfolios of standard options. Static replication
is especially suited to hedging exotic high-gamma options which
require frequent and costly dynamic hedging. A single static hedge
can reduce potential risk over long periods of time and large ranges
of stock price.

The static approach uses options to hedge other options positions
over long periods of time. It is therefore naturally suited to manag-
ing books that contain large numbers of options, especially in lig-
uid options markets.

2. Structuring
You can create a static replicating portfolio with the same payoff as
an exotic option, perhaps at a reduced premium. You can even rep-
licate target options of your own design that are not offered in the
market.

3. Valuation

Static replication decomposes a target option into a portfolio of
standard options. The market value of the portfolio provides a
practical estimate for the fair value of a target option. This value
may reflect the true cost of the option more realistically than the
usual theoretical value, especially in the presence of transaction
costs, volatility smiles, and other market conditions that violate
the assumptions behind Black-Scholes.

You can use the same method to specify a static hedge for a portfolio
of target stock (index) options, as well as for options on interest rates
or currencies, though we will not consider those applications in this
paper.
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The static replicating portfolio is not unigue. You can use a variety of
static portfolios available to find one that achieves other aims as well
— minimizing volatility exposure, for example. In some cases, it is
possible to find a portfolio consisting of only a small number of
options that provides a static hedge (see Appendix A). In general, a
perfect static hedge requires an infinite number of standard options.
Even so, a static hedge portfolio with only several options can provide
adequate replication over a wide variety of future market conditions.

Our approach differs from other attempts to statically hedge options.
Some earlier methods have used an optimization strategy to mini-
mize the discrepancy between the target and replicating portfolio val-
ues over a range of market conditions. Others have focused on finding
static hedge portfolios in special cases where a small number of

options can exactly replicate an exotic target option3.

Our approach differs in principle: we can systematically specify, step-
by-step, how to find a perfect portfolio that replicates a path-indepen-
dent exotic option at all future stock price levels and times. In gen-
eral this requires an infinite number of options. We can then use the
same method with only a limited number of options to replicate the
target option precisely at a limited number of stock prices and times.
By increasing the number of options in the replicating portfolio we
can increase the accuracy of replication. Often, a fairly small portfolio
works adequately, and limits the transaction costs.

This paper proceeds as follows. In the next section we investigate an
intuitive approach towards replication. We then show how you can
generalize this method to develop a comprehensive theory of replica-
tion. We then illustrate in detail how the method works in a binomial
lattice world where only discrete stock price moves are allowed.
Finally, we give some practical examples of static replicating portfo-
lios for barrier options. In Appendix A, we present several static
hedge portfolios consisting of only small numbers of options that nev-
ertheless exactly replicate an exotic target option under special cir-
cumstances. Appendix B reviews the mathematics of static
replication.

3. Peter Carr, Cornell University, Seminar at Goldman, Sachs & Co., August 1993.
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FIRST STEPS TOWARDS
REPLICATION

Barrier options* have high gamma when the underlying stock price
is in the neighborhood of the barrier. In that region, dynamic hedging
is both expensive and inaccurate, and static hedging is an attractive
alternative. In this section we introduce our approach to static repli-
cation by trying to use standard (non-barrier) options to replicate an
up-and-out European-style call option, described in Table 1.

TABLE 1. An up-and-out call option.

Stock price: 100

Strike: 100

Barrier: 120

Rebate: 0

Time to expiration: 1 year

Dividend yield: 5.0% (annually compounded)
Volatility: 25% per year

Risk-free rate: 10.0% (annually compounded)
Up-and-Out Call Value: 0.656

Ordinary Call Value: 11.434

There are two different classes of stock price scenarios that deter-
mine the option’s payoff:

1. The stock price does not hit the barrier before expiration. In this
case, the up-and-out call has the same value as an ordinary call
with strike equal to 100.

2. The stock price hits the barrier before expiration. Then the up-
and-out call is extinguished and has zero value.

These are displayed in Figure 1 below.

4. For information on the theory of barrier options, see The Ins and Outs of
Barrier Options, Emanuel Derman and Iraj Kani, Quantitative Strategies
Research Notes, June 1993.
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stock
price A
scenario 2: barrier struck,
call expires worthless
B

scenario 1:
VRN /\ barrier avoided

/ Y% payoff = max(S’- K, 0)
S=K

0 — P> time
expiration

«

FIGURE 1. Stock price scenarios for an up-and-out European call
option with strike K = 100 and barrier B = 120.

From a trader’s point of view, a long position in this up-and-out call is
equivalent to owning an ordinary call if the stock never hits the bar-
rier, and owning nothing otherwise. Let’s try to construct a portfolio
of ordinary options that behaves like this.

First we replicate the up-and-out call for scenarios in which the stock
price never reaches the barrier of 120 before expiration. In this case,
the up-and-out call has the same payoff as an ordinary one-year
European-style call with strike equal to 100. We name this call Port-
folio 1, as shown in Table 2. It replicates the target up-and-out call
for all scenarios which never hit the barrier prior to expiration.

TABLE 2. Portfolio 1. Its payoff matches that of an up-and-out call if
the barrier is never crossed before expiration.

Quantity | Type | Strike | Expiration | Value 1 year before expiration
Stock at 100 | Stock at 120

1 call 100 1 year 11.434 25.610

The value of Portfolio 1 at a stock level of 120 is 25.610, much too
large when compared with the zero value of the up-and-out call on
the barrier. Consequently, its value at a stock level of 100 is 11.434,
also much greater than the value (0.657) of the up-and-out call.
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Portfolio 1 replicates the target option for scenarios of type 1. By add-
ing a suitable short position in just one extra option to Portfolio 1, we
can attain the correct zero value for the replicating portfolio at one
definite future time on the barrier at a stock price of 120. Let’s choose
to do this one year from expiration by cancelling the previous portfo-
lio value of 25.610 at a stock price of 120 with one year to expiration.
Table 3 shows Portfolio 2, consisting of a single one-year 100 strike
standard call (that is, Portfolio 1) plus a short position in 1.866 one-
year calls struck at 120. The 120 strike call has no payoff at expira-
tion below the barrier, and therefore doesn't alter the replication for
scenarios of type 1 already achieved by Portfolio 1. Any strike greater
than 120 would achieve the same goal.

Here's the reason we choose to go short 1.866 120 calls. The theoreti-
cal value of the 100 call at a stock price of 120 with one year to expi-
ration in Table 2 is 25.610. The theoretical value of the 120 call is

13.721. By going short  25.610" 13.721= 1.866 call options struck at
120, we can cancel the theoretical value of the 100 call on the 120
barrier with one year to expiration, and so ensure that Portfolio 2 will
have zero value on the 120 barrier.

Portfolio 2 replicates the value of the up-and-out call (1) at expiration
below the barrier, and (2) exactly on the 120 barrier at one year prior
to expiration. Table 3 shows that its value when the stock is at 100 is
2.832, which is larger than the up-and-out call value of 0.657 at the
same market level. This excess value reflects the fact that the value
of Portfolio 2 is zero on the barrier only at one year before expiration,
whereas the up-and-out call’'s value is zero on the barrier at all times.
Figure 2 shows the value of Portfolio 2 on the 120 barrier at all times
prior to expiration. You can see that its value deviates more dramati-
cally from the zero value of an up-and-out call on the barrier as expi-
ration approaches.

TABLE 3. Portfolio 2. Its payoff matches that of an up-and-out call if
the barrier is never crossed, or if it is crossed exactly 1 year before
expiration.

Quantity | Type | Strike | Expiration | Value 1 year before expiration
Stock at 100 Stock at 120

1.000 call 100 1 year 11.434 25.610
-1.866 call 120 1 year -8.602 -25.610
Net 2.832 0.000
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FIGURE 2. Value of Portfolio 2 on the barrier at 120.

Portfolio 3 in Table 4 illustrates an alternative replicating portfolio.
It adds to Portfolio 1 a short position in one extra option so as to
attain the correct zero value for the replicating portfolio at a stock
price of 120 with 6 months to expiration, as well as for all stock prices
below the barrier at expiration. Figure 3 shows the value of Portfolio
3 for stock prices of 120, at all times prior to expiration. You can see
that the replication on the barrier is good only at six months. At all
other times, it again fails to match the up-and-out call's zero payoff.

TABLE 4. Portfolio 3. Its payoff matches that of an up-and-out call if
the barrier is never crossed, or if it is crossed exactly at 6 months to
expiration.

Quantity | Type | Strike | Expiration | Value 6 months before expiration

Stock at 100 Stock at 120

1.000 call 100 1 year 7.915 22.767
-2.387 call 120 1 year -4.446 -22.767

Net 3.469 0.000
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FIGURE 3. Value of Portfolio 3 on the barrier at 120.

By adding one more call to Portfolio 3, we can construct a portfolio to
match the zero payoff of the up-and-out call at a stock price of 120 at
both six months and one year. This portfolio, Portfolio 4, is shown in
Table 5.

TABLE 5. Portfolio 4. Its payoff matches that of an up-and-out call if
barrier is never crossed, or if it is crossed exactly at 6 months or 1
year to expiration.

Quantity | Type | Strike | Expiration | Value for stock price = 120
6 months 1 year
1.000 call 100 1 year 22.767 25.610
-2.387 call 120 1 year -22.767 -32.753
0.752 call 120 6 months 0.000 7.142
Net 0.000 0.000

The value of Portfolio 4 on the barrier at 120 for all times prior to
expiration is shown in Figure 4. You can see that this portfolio does a
much better job of matching the zero value of an up-and-out call on
the barrier. For times between zero and six months the boundary
value at a stock price of 120 remains fairly close to zero.
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FIGURE 4. Value of Portfolio 4 on the barrier at 120.

By adding more options to the replicating portfolio, we can match the
value of the target option at more points on the barrier. Figure 5
shows the value of a portfolio of seven standard options at a stock
level of 120 that matches the zero value of the target up-and-out call
on the barrier every two months. You can see that the match between
the target option and the replicating portfolio on the barrier is much
improved. In the next section we show that improving the match on
the boundary improves the match between the target option and the
portfolio for all times and stock prices.
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FIGURE 5. Value on the barrier at 120 of a portfolio of standard
options that is constrained to have zero value every two months.
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THE METHOD OF
STATIC REPLICATION
IN A BINOMIAL WORLD

Options Valuation by
Backward Induction

We will now show how you can statically replicate a target option
with a portfolio of other options for all times and all market levels.
Our method relies on the theory of options valuation.

Because its results are easy to visualize, we will employ the binomial
method of options valuation to illustrate our replication strategy. In
the binomial method, time passes in quantized steps. At each step
the stock price is allowed to move up or down a fixed amount. In the
limit where the time steps and the stock moves become smaller and
smaller, the imaginary world of the binomial method approaches a
model in which stock prices change continuously and are distributed
lognormally, and its options pricing formula becomes equivalent to

the Black-Scholes solution?.

The binomial method is not a different model from the Black-Scholes
model. It is an alternative way of solving the same options model that
at the same time provides a clear visual picture. We now proceed in

this framework®.

Imagine you have a binomial tree of stock prices with a finite number
of time periods between today and expiration. We will show how to
replicate an arbitrary target option with a portfolio of other options
so that, at every time and stock price allowed in the binomial model,
the replication is exact.

In the binomial method, we value derivative securities with uncer-
tain future payoffs by backward induction in a risk-neutral world.
The method is illustrated in Figure 6 for options on stock.

There are three components to the method:

1. The risk-neutral binomial tree. This is a tree of stock prices con-
structed so that the mean stock price grows with time like the for-
ward stock price. This constraint follows from the assumption that
options can be hedged with stock.

5. The method of static hedging we present here can and should be carried out using
the implied tree when volatility is skewed. See Emanuel Derman and Iraj Kani,
Riding On A Smile, RISK, vol 7, no 2, pp 32-39, and The Volatility Smile and Its
Implied Tree, Goldman Sachs Quantitative Strategies Research Notes, January
1994.

10



§sdpman

QUANTITATIVE STRATEGIES RESEARCH NOTES

2. The boundary conditions. These are the values of the option on

some boundary in the future where its value is determined (for
example, by the option's terms) at each stock price node on the
boundary. The values of the option everywhere inside the bound-
ary are uniquely determined by these boundary values.

. The backward equation. This is the formula for computing all ear-

lier option values from the boundary option values by moving
backwards down the tree. In mathematical form, the equation rep-
resents the statement that a hedged position must earn the same
instantaneous return as a riskless money-market account. In the
limit of infinitesimally small time steps and stock moves, the back-
ward equation becomes the Black-Scholes equation.

stock
price A
risk-neutral
binomial tree boundary where
of stock prices future option
values are known
current backward
option equation
value

time

FIGURE 6. The method of backward induction.

The risk-neutral binomial tree depends only on interest rates, the
current stock price, the stock volatility and the stock dividend yield.
The backward equation is the same for all securities whose values
are contingent on the stock price. Only the boundary condition differs
from security to security. If two different portfolios have the same
values everywhere on the boundary, and produce the same cashflows
inside this boundary, the backward equation dictates that they will
have the same values everywhere inside the boundary. This leads to

the principle of static replication.

11
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The Principle of Static
Replication

An Explicit Example:
Static Replication of an
Up-and-Out Call

You can replicate a target security for all future stock prices and
times within some boundary by constructing a portfolio of securities
with the same net cashflows within this boundary and the same net
values on the boundary.

Let's illustrate how this works. In order to concentrate on the essence
of the method, we’ll make certain simplifying assumptions. Dropping
these assumptions does not invalidate our method; it just makes the
explanation less transparent. So, we assume that interest rates and
stock dividend yields are zero, and that the stock is worth 100 today.
We also assume that the stock price can move up or down 10 with
equal probability (of 1/2) only at the end of each year. Figure 7 shows
the binomial tree of stock prices for this stock in the risk-neutral
world over the next five years.

Time 0 1 2 3 4 5
(years) I [ [ [ I I
Stock Tree 150
each node shows: stock price

FIGURE 7. A binomial tree of stock prices in dollars. Up and down
moves have equal probability.

12
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Let's choose a five-year up-and-out European-style call with a strike
of 70 and a knockout barrier of 120 as the target barrier option we'll
try to replicate. This option has a natural boundary at expiration in
five years, where it expires, and on the knockout barrier at 120.
These boundaries are shown in Figure 8.

Time
(years) I [

knockout boundary
Up-and-Out Call Tree
each node shows: call value 0

11.88

expiration boundary

FIGURE 8. A binomial tree of call prices for a five-year European-style
up-and-out call with strike at 70 and barrier at 120. The corres-
ponding stock prices at each node are shown in Figure 7.

For those scenarios in which the stock price reaches expiration in
year 5 without having touched the knockout boundary, the call has
the payoff of an ordinary call. Its boundary value on each node in the
heavily shaded expiration boundary in Figure 8 is

call value = max (S -70, 0) (EQ1)

At all nodes on the knockout boundary at a stock level of 120, the call
is worth zero.

13
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At earlier times the value of the call is given by the formula

— Cu"'cd

5 (EQ2)

Equation 2 is the backward equation familiar to users of binomial
models. C, 4 denotes the call value at the up and down nodes one

year in the future. (C,+C,)/2 is the expected value of the call, and

since we have chosen interest rates to be zero for pedagogical simplic-
ity, there is no need to discount the expected value. You can check to
see that the value of the call at each earlier node in the tree, below
the knockout boundary and before expiration, is obtained by using
this equation to work backwards in time through the tree. If we con-
structed stock and option trees with smaller and smaller time periods
between successive levels, Equation 2 would become equivalent to
the Black-Scholes equation. The up-and-out call is worth $11.88
today in this simplified binomial world with one-year steps.

How can you replicate this up-and-out call with ordinary options?
You need to create a portfolio of ordinary options that have the same
payoff on the boundaries. The four trees in Figure 9 illustrates the
procedure we use. The boundary on which we want to match the
value of the up-and-out option is shown as a heavy grey line. Tree 1 is
the tree of binomial stock prices. Tree 2 is the tree for a replicating
portfolio that matches the target option’s payoff on the expiration
boundary. Tree 3 is the tree for a portfolio that also matches the pay-
off at one point on the knockout boundary. Finally, Tree 4 shows the
perfect replicating portfolio that matches the target option’s payoff on
all boundaries, and therefore at every node inside the boundary as
well.

Tree 1 shows the stock prices at each node. Tree 2 shows the value of
an ordinary 5-year call struck at 70. It has the same values as the up-
and-out call of Figure 8 at expiration in year 5 at all nodes below the
barrier of 120. Therefore, this ordinary call replicates the up-and-out
call perfectly if the barrier is never struck. However, the ordinary call
has a value of 50 at those stock nodes labeled A and B that corre-
spond to stock prices of 120 in year 2 and year 4. In contrast, the up-
and-out call has zero value at those nodes.

14
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. 1 4
Time 2 3 5
ears
(years) 150
140
stock 130
120 120 130
110
110 110
100 100 100 (1)
90 90
90 80
80 70 70
60 50
long 1 5-year call, strike 70 20 80
60 60
B 5 50.A
40 40 40
30.63 30 30
21.25 20 20 (2
12.50 10
5 0
0 0

long 1 5-year call, strike 70
short 10 5-year calls, strike 120

-220
c 130 —
B 65— -40
D 0
- 15 30 40
5.63 17.50 (3)
15.00 290 10 20
12.50 5
0 0
0
long 1 5-year call, strike 70
short 10 5-year calls, strike 120
long 5 3-year calls, strike 120
-220
C -130
-15 -40
0 0
15 40
11.88 815 1750 30 ()
20 20
15.00
1250 10
0
0 0

FIGURE 9. Replicating an up-and-out call with a portfolio of ordinary
calls.

15
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By adding a short position in 10 5-year calls with a strike of 120 to
the portfolio in Tree 2, the portfolio value can be made zero at node A.
This portfolio is shown in Tree 3. Because the strike of the new calls
is not below 120, it expires out-of-the-money if the barrier is never
struck. Therefore, it does not spoil the replication already achieved
on the expiration boundary in year 5. However, this portfolio now has
a value of -25 at stock node B, in contrast to the zero value of the up-
and-out call option at the same node.

To alter the value of -25 at node B to zero, we need to achieve a port-
folio value of -15 at node C in Tree 3. Since node C has a portfolio
value of -65, we must add 50 to the portfolio value there. We can
achieve this by adding a long position in 5 three-year calls struck at
120 to the portfolio. Because the strike of these new calls is not below
120, they do not spoil the replication already achieved below the
knockout barrier. This new portfolio is shown in Tree 4.

You can see that the portfolio we have constructed in Tree 4 has val-
ues on the nodes of the knockout boundary which exactly match
those of the up-and-out call in Figure 8. Consequently, the values
obtained from the backward equation at all earlier nodes inside the
boundary also have the same values as those of the up-and-out call.

Let's summarize what we've done. Our target option was an up-and-
out call. We defined the boundary to be the collection of nodes on the
out barrier and at expiration. We noticed that an ordinary call with
the same strike would produce the same values as the up-and-out
call at expiration, but different values on the out barrier. We were
then systematically able to correct the values on the out barrier by
adding positions in calls struck at the barrier with earlier expira-
tions. In this way, we reproduced the value of the up-and-out call at
all nodes on the boundary. The result was perfect replication in this
binomial world. There was nothing unique about the portfolio we
chose; we could have used calls with a strike greater than 120 to
achieve the cancellation on the out barrier.

We can use this technique to match the boundary node values of any
target option, using a replicating portfolio of as many ordinary
options as are necessary. On boundaries above the current stock price
we need to use calls with strikes on or above that boundary. This
ensures that the calls in the replicating portfolio will have no payoff
below the boundary, and so will not ruin the replication already
achieved within the boundary. Similarly, on boundaries below the
current stock price, we must use puts with strikes on or below the
boundary.

In the next section we show how to apply this method when we are no
longer working in the binomial framework.
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STATIC REPLICATION
STRATEGY IN THE REAL
WORLD

In the previous section we showed how to replicate exactly an option
in the binomial world. Because there are only a limited number of
nodes on the binomial boundaries, you can replicate the target option
exactly with a limited number of ordinary options. In the real world,
stocks trade more or less continuously, and so achieving exact repli-
cation in general will require a portfolio with an infinite number of
ordinary options. Nevertheless, by constructing a portfolio that
matches the target option’s payoff at a well-chosen but limited set of
boundary points, you can still achieve good replication everywhere.
In this section we describe how to do this.

Stock options contracts specify the payoff of the option under all pos-
sible future scenarios. Most contracts define the payoff on a time
boundary at expiration and on a finite set of stock price boundaries
which together surround the current value of the underlyer. These
payoffs can be specified in terms of cash, stocks or options them-
selves.

The diagrams in Figure 10 illustrate some payoff boundaries. Each
diagram shows a boundary that completely surrounds the current
stock price, in the sense that all stock price paths moving out into the
future from the current time and current stock price must terminate
on that boundary. (In some cases there is a boundary at infinity that
we don’t show.)

Figure 10(a) shows the boundary for a call option. The terminal value
of the call at expiration is given by max (stock price - strike, 0). For a
European-style call, all stock paths ultimately hit this boundary. For
an American-style call there is an early exercise boundary before
expiration. Figure 10(b) shows the boundary for a down-and-in call.
The payoff at expiration is zero if the barrier has never been hit. The
payoff on the in barrier is specified in terms of the value of the ordi-
nary call that the down-and-in call converts to on that barrier.
Finally, Figure 10(c) shows a general payoff boundary. The values at
each point on it can be specified in terms of cash, stock or options
value.

If you can replicate the value of a target option at each point on this
general boundary using a portfolio of ordinary call and put options,
without introducing additional payoffs or cashflows within the
boundary, then the value of the portfolio must be the same as the
value of the target option.
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FIGURE 10. Options boundaries: (a) ordinary call (b) European-style

down-and-in call (c) general option.
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Figure 11 shows the options you can use to match the boundary val-
ues of the target option without introducing these extra cashflows. At
each point on the boundary, use an ordinary option that expires at
that time, and whose strike is determined in the following way. On
boundaries above the current stock value, use calls with strikes on or
above the boundary. This prevents the call from having a payoff
within the boundary, and so altering the value of the option that has
already been computed via the backward equation from future
boundary values. Similarly, on boundaries below the current stock
value, use puts with strikes on or below the boundary. Finally, on
expiration-style boundaries that have a fixed-time, you can use calls
or puts of any convenient strike.

stock
prlceA .
boundary above: use out-of-the-money calls
fixed-time boundary:
currentl use calls or puts
value with any strike

poundary below: use out-of-the-money puts

time

now

FIGURE 11. Allowed strikes for options replication.

In Figure 12 we illustrate how to construct a replicating portfolio
that matches the target option’s value on the boundary for a series of
discrete times t;, t, ... out to expiration te,,. We first look at the expi-
ration boundary and match the payoff of the target option there with
a portfolio consisting of a combination of European-style calls and/or
puts with different strikes that expire at that time. This is our initial
replicating portfolio that takes care of replication at expiration.

Moving back one time step before expiration (t, in Figure 12), we can

compute the theoretical value of the initial replicating portfolio at
time t, at the boundary stock price U,. In general, this theoretical
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value will not match the boundary value of the target option when
the stock price is U,. You can now add a position in ordinary calls

with expiration at tg,, and strike at or above Ugy, to the initial repli-

cating portfolio. You must choose these calls such that their theoreti-
cal value, when added to the theoretical value of the initial portfolio
at stock price U, and time t4, yields the value of the target option at

stock price U,. The corrected replicating portfolio then consists of the

initial replicating portfolio plus the position in these new calls. These
new calls expire out of the money below stock levels of Ug,,, and

therefore do not alter the cash position at time t,,, in the portfolio of
calls and puts that already replicate the target option at expiration.

stock

IOrlceA upper boundary U
Uy expiration
Ppoundary:
S’=S

Lexp lower boundary L

h & - T VT time t

FIGURE 12. Replicating the payoff of an option at discrete times.

Similarly, by adding an appropriate position in puts with strike at or
below Ly, You can make the replicating portfolio have the appropri-

ate boundary at a stock price of L, at time t,. The addition of these

puts to the replicating portfolio will not affect the replication already
achieved on the boundary at expiration, because they expire out of
the money at this stock price level.

You can now move back to time tz, and in the same way add more
calls and puts with expiration t, to the replicating portfolio to ensure
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that it matches the target option’s boundary values at time t3. Again,

you must be careful to choose calls with strikes above the upper
boundary and puts with strikes below the lower boundary.

By repeating this procedure at times t, and t, you can create a static

replicating portfolio that has the same value as the target option at
all of these chosen times on the boundaries, and at expiration.

In principle, you can match the target option payoffs at as many
points on the boundary as you like. The more points you match, the
better the replication. If you were to use an infinite number of
options in the target portfolio, you could match the payoff everywhere
on the boundaries. The target portfolio would have exactly the same
value as the static portfolio at all times and all stock prices, as long
as interest rates, volatilities and other parameters that appear in the
model did not change. In the next section we demonstrate some prac-
tical results that show how well you can do with a small number of
options in the replicating portfolio.

There are several features of the static replicating portfolio that are
worth noting:

= You can find a static replicating portfolio for options with rather
complicated boundaries, as long as all boundary payoffs are
known.

= The boundaries on which the payoffs are known need not be the
actual boundaries of the target option. For example, you don’t have
to choose the lower boundary to be the knock-in barrier when rep-
licating a knock-in call; you can instead choose to match its value
at some higher stock price at which the value of the knock-in call is
known.

< If you are using a static portfolio to replicate some target option,
you must unwind the portfolio when the stock price hits any
boundary, trading out of it and into the security (cash, stock or
option) that produces the target option’s value on that boundary.
Theoretically, this unwinding and replacement is costless.
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A PRACTICAL EXAMPLE

Replicating an Up-and-
Out Call

In this section we give some examples of static replicating portfolios
for some exotic equity options.

Consider the up-and-out European-style call option defined in Table 6.
Its theoretical value with one year to expiration is 1.913. We can use
our method to construct a static replicating portfolio. Table 7 shows
one particular example. It consists of a standard European-style call
option with strike 100 that expires one year from today, plus six additi-
nal options each struck at 120. The 100-strike call replicates the payoff
at expiration if the barrier is never struck. The remaining six options
expire every two months between today and the expiration in one year.
The position in each of them is chosen so that the total portfolio value
is exactly zero at two month intervals on the barrier at 120.

TABLE 6. An up-and-out call option.

Stock price: 100

Strike: 100

Barrier: 120

Rebate: 0

Time to expiration: 1 year

Dividend yield: 3.0% (annually compounded)
Volatility: 15% per year

Risk-free rate: 5.0% (annually compounded)

Up-and-Out Call Value: 1.913

The theoretical value of the replicating portfolio in Table 7 at a stock
price of 100, one year from expiration, is 2.284, about 0.37 or 19% off
from the theoretical value of the target option. Figure 13 shows the
mismatch in value, in both dollar terms and in percentage of the value
of the target option, between the theoretical value of the replicating
portfolio and the target portfolio, over a range of stock prices as time
passes. You can see that the replication in percentage terms is good to
within 30% over a large range of stock price and time. Near the barrier
itself, the percentage mismatch becomes large, but it is a large per-
centage of a vanishing option value, so the actual dollar mismatch is
small. The only region of large dollar mismatch is near the barrier,
close to expiration.
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TABLE 7. The replicating portfolio.

Quantity | Option | Strike | Expiration Value
Type (months) (Stock = 100)
0.16253 | Call 120 2 0.000
0.25477 | Call 120 4 0.018
0.44057 Call 120 6 0.106
0.93082 | Call 120 8 0.455
2.79028 | Call 120 10 2.175
-6.51351 Call 120 12 -7.140
1.00000 | Call 100 12 6.670
Total 2.284

Instead of using six options, struck at 120, to match the zero bound-
ary value on the barrier every two months for one year, we can use 24
options to match the boundary value at half-month intervals. In that
case, the theoretical value of the replicating portfolio becomes 2.01,
only 0.10 away from the theoretical value of the target option. The
behavior of the replicating portfolio over a range of stock prices and
times to expiration is shown in Figure 14. You can see that the portfo-
lio value varies like that of an up-and-out option with barrier at 120.
The replication mismatch is shown in Figure 15, and is clearly

smaller than in the case of replication with six options.
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Replication Mismatch (%)
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FIGURE 13. The replication mismatch between the target option of

Table 6 and the replicating portfolio of Table 7.
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Call Value vs Stock Price and Time to Expiration

0 months

6 months
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FIGURE 14. Theoretical value of a 24-option replicating
portfolio for the target option of Table 6.
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Replication Error ($)
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FIGURE 15. Replication mismatch between a 24-option replicating

portfolio and the target option of Table 6.
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APPENDIX A: SOME EXACT
STATIC HEDGES

A Down-and-Out Call
with Barrier at the Strike
and Forward Close to
Spot

Under certain circumstances, you can statically replicate a barrier
option with a position in stocks and bonds alone, avoiding the need
for options. We present and analyze several examples below.

Consider a European down-and-out call option® with time t to expira-
tion on a stock with price S and dividend yield d. We denote the
strike level by K and the level of the out-barrier by B. We assume in
this particular example that B and K are equal. and that there is no
cash rebate when the barrier is hit. There are two classes of scenarios
for the stock price paths: scenario 1 in which the barrier is avoided
and the option finishes in-the-money; and scenario 2 in which the
barrier is hit before expiration and the option expires worthless.
These are shown in Figure 16.

stock A scenario 1:
price barrier avoided
value =S’ - K

knockout barrier

scenario 2:
barrier hit
value =0
expiration time

FIGURE 16. A down-and-out European call option with B = K.

In scenario 1 the call pays out S'-K, where S' is the unknown value
of the stock price at expiration. This is the same as the payoff of a for-
ward contract with delivery price K. This forward has a theoretical
value F = Se-9t—Ke~t, where d is the continuously paid dividend
yield of the stock. You can replicate the down-and-out call under all
stock price paths in scenario 1 with a long position in the forward.

For paths in scenario 2, where the stock price hits the barrier at any
time t' before expiration, the call immediately expires with zero
value. In that case, the above forward F that replicates the barrier-
avoiding scenarios of type 1 is worth Ke-dt —Ke—t" . This matches the
option value for all barrier-striking times t' only if r = d. So, if the
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Barrier Calls on a Stock
with Large Volatility

riskless interest rate equals the dividend yield (that is, the stock for-

ward is close to spot®), a forward with delivery price K will exactly
replicate a down-and-out call with barrier and strike at the same
level K, no matter whether the barrier is struck or avoided.

Let’s look at a down-and-in call similar to the call above, but where
the strike K is above the barrier B. For very large volatility, the stock
price is almost certain to hit the barrier, as shown in Figure 17.

stock A
price
S
K
B
barrier hit very soon
down-and-in call becomes ordinary call
value = Bexp(-dt)
>
time

FIGURE 17. A down-and-in European call with large volatility.

When the stock price hits the barrier, S equals B and the down-and-
in call becomes an ordinary call with large volatility. It's value is then
Be-dt, because owning a call on a stock with very large volatility is
equivalent in value to a long stock position less the dividends paid
during the option’s lifetime. So, the down-and-in call’s value is Be-dt.
You can replicate it before the stock price hits the boundary by own-

ing Be-dt dollars. When the stock price hits the barrier, the static rep-

licating portfolio will have a theoretical value large enough to fund
the purchase of an ordinary call with strike K.

6. In late 1993, the S&P dividend yield was close in value to the short-term interest
rate, and so this static hedge might have been applicable to short-term down-
and-out S&P options.
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Barrier Puts on a Stock
with Large Volatility

Now look at a down-and-out call. It is equivalent to a long position in
an ordinary call with the same strike and a short position in a down-

and-in call with the same strike and barrier®. When volatility is
large, the ordinary call is worth Se-dt and the down-and-in call is
worth Be—dt. So, the down-and-out call has a value Se-dt—Be ™. You
can statically replicate it by buying e-9t shares of stock and short-
ing Be—dt dollars.

Similarly, you can statically replicate barrier puts with stock when
volatility is very large. The argument is a little more subtle than the
one for calls, and is illustrated in Figure 18.

stock . .
price A barrier hit very soon
up-and-out put has value zero
up-and-in put has value Kexp(-rt)
B

probability of hitting up barrier is S/B

K
S

probability of hitting zero stock price is (B - S)/B
0 > time

up-and-out put has value Kexp(-rt)
up-and-in put has value zero

FIGURE 18. A European barrier put with large volatility.

Let’s first look at an up-and-out put with strike K, and with barrier B
above the strike. At very high volatilities, there are only two possibil-
ities for the stock price, as shown in Figure 18: it will either rapidly
move up and hit the out-barrier or move down and stop at zero stock
price, which is effectively also a barrier. The value of the up-and-out
put at stock price S is the average of its values at zero stock price and
the barrier B.
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If B is an out-barrier, the put will be worth zero there. At zero stock

price a high-volatility Black-Scholes put is worth exactly Ke—t, the
present value of the strike.

To calculate the average value you need the probabilities of reaching
either barrier. At very high volatilities the lognormal distribution of
stock prices assumed in the Black-Scholes model becomes flat, and so
the probability of not reaching one barrier is proportional to how
close the stock is to the other barrier. The probability pg of hitting B

is therefore proportional to the “distance” between the current stock
price and zero stock price, that is S. Similarly, the probability pg of

hitting zero stock price is proportional to the “distance” between S
and B, that is (B - S). Because the probabilities must add to one,

pg = S/B and p, = (B-S)/B, as shown in Figure 18.

The value of the up-and-out put is given by the average
pg x0+pyxK =Ke(1-S/B) (EQ 3)

This shows that you can replicate the up-and-out put when volatility
is very high by a long position in a zero-coupon bond with a face of K

dollars and a short position in Ke™/B shares of stock.

Now let’s look at an up-and-in put. An up-and-in put is equivalent to
a long position in an ordinary put combined with a short position in
the up-and-out put. At high volatility the ordinary put has value

Ke=t. So, the value of the up-and-in put is given by the value of Equa-
tion 3 less Ke—t, that is Ke—t(S/B). This shows that you can repli-

cate the up-and-in put with high volatility via a long position in Ke-'t
shares of stock.
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Barrier Calls on a Stock
with Finite Volatility

We are indebted to Peter Carr of Cornell University for the example
below?.

Let's look at a European-style down-and-in call option with strike K
and barrier B, where the barrier is below the strike. In Figure 19 we
illustrate the stock price S, the strike K, the barrier B and another
strike K’ somewhere below the barrier.

stock A
price scenario 1:
barrier avoided
S value =0
K
B
scenario 2: barrier hit
value = C(B,K,, d,o,t)
K’
|
expiration time

FIGURE 19. Behavior of a down-and-in European call with B < K.

Again, there are again two classes of scenarios that determine the
value Cy, of the knock-in call:

1.

The stock price never hits the barrier B before expiration. In that
case, whether the stock price finishes above or below the strike,
the knock-in call expires worthless and Cy, = 0.

The stock price hits the barrier B when the remaining time to
expiration is t. The down-and-in call knocks in to become an ordi-
nary call with strike K and value C(B,\K,rd,ot), where
C(S,K,r,d,ot) is the value of a Black-Scholes call with stock price S,
strike K, riskless rate r, dividend yield d, volatility o, and time to
expiration t.

These values of the knock-in call for each of these scenarios are
shown in Figure 19.
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Is there some other security you can buy in advance that will have
the same value under each scenario?

First look at scenario 1 in which the stock price has never hit the bar-
rier. At expiration, S is greater than B and the value of the call is
zero. Any put with strike K' below the barrier B will expire out of the
money in this region, and also have zero value. Let P(S,K',d,o,t) be
the value of this put with strike K' and time to expiration t. You can
use this put to replicate the down-and-in call for stock paths that
never hit the barrier.

Now, suppose you try to use some number n of these puts to replicate
the down-and-in call for scenario 2 as well. In scenario 2 the stock
price hits the barrier at some time t before expiration. Then the puts
are worth n x P(B,K',r,g,t). In contrast, the down-and-in call has
knocked in and has a theoretical value C(B,K,r,o,t). Suppose you can
choose the strike K’ such that the puts have the same value as the
call. Then this put portfolio will statically replicate the knock-in call
for all scenarios.

Under certain conditions there is an appropriate value of K'. You
need a value of K' such that the put portfolio and the call have the
same value on the knock-in boundary, that is

C(B,K,r,d,o,t) = nxP(B,K',r,d,o,t) (EQ4)

There are two symmetries of the Black-Scholes formula for calls and
puts that we can use to find a K' and an n that solve Equation 4.
First, a call on stock is the right to exchange a zero-coupon bond for
stock. This exchange option can alternatively be written as a put on
the bond, and so,

Cc(B,K,r,d,o,t) = P(K,B,d,r,o,t) (EQ5)
Second, when stock prices evolve lognormally, the same proportional

increase in stock price and strike produces a similar increase in
option price:

P(K,B,d,r,0,t) =mxPE B d,r,0,t] (EQ6)
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Then,

Cc(B,K,r,d,o,t) = P(K,B,d,r,o,t)

0 (EQ7)

K B2
- EXP%’?’d’r,G,tD

where the first step follows from Equation 5 and the second step fol-
lows from Equation 6 with m = K/B.

If you compare Equation 7 with Equation 4, you can see that they are
identical except for a switch in the roles of r and d. If r = d, then the
switch makes no difference, and Equation 4 can be satisfied with

n = K/B and K' = BZK.

This means that if r = d, that is if forward is equal to spot for the
stock, then you can statically replicate a down-and-in European call

by means of n = K/B ordinary puts struck at B2/K . The put repli-
cates the knock-in call in the following sense. Before knock-in, it has
exactly the same value for all stock prices. If no knock-in occurs
before expiration, it has the same terminal value. Finally, at knock-
in, it has exactly the same value as the call into which the knock-in is
transformed. Therefore, assuming negligible transaction costs and no
change in interest rates or volatility since the initial options position,
you can trade out of the put and into the knocked-in call with zero
cost.

In Figure 19 we assume that the barrier B is below the strike K. Only
in that case does the put with strike K' replicate the down-and-in call
value on the barrier (scenario 1) and also have zero value at expira-
tion if the barrier is never struck (scenario 2). Had the barrier been
above the strike, the put would have replicated the down-and-in call
under scenario 1, but not under scenario 2.

Similarly, when r = d, you can replicate an up-and-in put with bar-

rier B above the strike K by means of n = K/B calls struck at B2/K .
A single call can match the value of the knock-in put on the barrier
and at expiration only when the barrier is below the strike.
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APPENDIX B:
MATHEMATICS OF STATIC
REPLICATION

In this section we will present some mathematical concepts regard-
ing the static replication of options. We assume that there is a single
source of uncertainty driving the stock price process represented by
the Wiener process Z(t) in terms of which the stock evolution is
given by

dS—S = rdt + odZzZ (EQ 8)

Let I (S, T -t) denote the value at time t of a claim contingent on
stock price S, defined in terms of its payoff on the boundary of a
proper region in (S, t) -plane containing today’s stock price and time.
We will assume’ that the stock prices at the boundary S,, can be
(locally) parametrized by means of some sufficiently regular function
of physical time B(t) for all time t except possibly at expiration T.
Working in the continuous theory, our objective is to find a represen-
tation of the value of the contingent claim’s value (S, T -t) at any

instant of time t and stock price S as the weighted average of values
of a set of standard options as follows:

.
r¢s,T-t) :J'a(t,u)C(S,K(u),u—t)du (EQ9)
t

where C(S, K, 1) denotes the value of a standard (call or put) option
with strike price K and maturity t . The form of the weighting func-
tion a(t,t) and the strike price function K(t) is so far unspecified
but can be restricted. Since we are interested in the static replication
the weights a(t, 1) must be independent of the initial time t:

%a(t,T) =0 for 1>t (EQ 10)

Hence we can drop the parameter t and use the simpler notation
a(t) for the static weight function. We will also assume that the

strike prices K(1) coincide with the boundary levels B(1):

7. Strictly speaking this assumption is not necessary to our construction. The
payoffs associated with boundary segments which lie parallel to the stock axis
(which cannot be parametrized in this fashion) can be hedged by the usual
means of butterfly spreads and therefore readily be included along with the
above construction to create static hedges for more general boundaries.
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K(1) = B(1) fort>t (EQ 11)

As described in the text, this assumption is sufficient, but not neces-
sary to guarantee that there are no redundant cashflows generated
by the hedging vehicles within the boundary Q. Altogether we have

the following relation:

.
r¢s, T-t) = Ia(u)C(S,B(u),u—t)du (EQ 12)
t

In many cases of interest the payoff at expiration of the given claim
r(s,0) is a discontinuous function®. This means that the weight
a(T) corresponding to the expiration is infinite and has the form of a

Dirac delta function. In these cases we can separate the terminal
weights and express Equation 12 in the generalized form:

.
r(s,T-t) = J'cx(u)C(S,B(u),u—t)du +0;C(S,B(T), T-t) (EQ13)
t

in which C;(S,B(T),T-t) formally represents the totality of all

hedging standard options necessary to hedge the terminal payoff of
the claim and a; represents collectively the respective weights.

Let &(t) be the known value (payoff) of the contingent claim on the
boundary point at time t:

&(t) = M(B(1), T-1) (EQ 14)

Evaluating Equation 13 on the boundary points would then lead to
the identity:

N
g(t) = J'or(u)C(B(t), B(u),u—t)du +0a;C(B(t),B(T), T -t) (EQ15)
t

We can solve Equation 15 recursively for the weights. This is done by
first determining the terminal weights a; by matching the contin-

gent claim’s terminal payoff with an appropirate collection of stan-
dard options with expiration T. It is a simple matter to show that the
terminal weights can always be determined in this manner. Then

8. Barrier options are good examples of the terminal payoff function having a
discontinuity across the barrier level.
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Equation 15 is used recursively to find the weights for hedges with
smaller expirations.

A discrete time solution of Equation 15 would begin with dividing the
time interval (t,T) into a set of equally spaced time points

t =ty ty, t, ...ty = T. We will denote the weights at these time points
respectively as a,, a,, ...ay . We will use the similar index notation for
other quantities of interest to us as well. Note that a, denotes collec-

tively the set of terminal weights which, as mentioned earlier, can be
determined easily from matching the terminal payoff of the contin-
gent claim with a portfolio of standard options with expiration T.
Evaluating Equation 15 at time t, _, would then give:

En-2 = ON_1C(By_2 By pty_1—ty_2) TaNCN(By 2 By ty —ty_2)  (EQ16)

which can be solved for the weight a _;:

_&n_2—O0NCN(By_2 Bty —ty_2)

Oy_q = (EQ 17)
Nt C(BN—ZIBN—PtN—l_tN—Z)
By continuing in this manner we will find the relation
o = 217 %+1CBL B g tivg ) = —ANCp(Bi 1 By, Ty~ 1) (Q 18)

! C(Bi_1Biti=t_y)

This relation is then used to recursively determine all weights from
the previous ones.
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