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I Introduction

Much research has been directed towards forecasting the volatility1 of various macroeconomic variables

such as stock indices, interest rates and exchange rates. However, comparatively little research has been

directed towards the optimal way to invest given a view on volatility. This absence is probably due to the

belief that volatility is difficult to trade. For this reason, a small literature has emerged which advocates

the development of volatility indices and the listing of financial products whose payoff is tied to these

indices. For example, Gastineau[16] and Galai[15] propose the development of option indices similar in

concept to stock indices. Brenner and Galai[4] propose the development of realized volatility indices and the

development of futures and options contracts on these indices. Similarly, Fleming, Ostdiek and Whaley[14]

describe the construction of an implied volatility index (the VIX), while Whaley[27] proposes derivative

contracts written on this index. Brenner and Galai[5, 6] develop a valuation model for options on volatility

using a binomial process, while Grunbichler and Longstaff[18] instead assume a mean reverting process in

continuous time.

In response to this hue and cry, some volatility contracts have been listed. For example, the OMLX,

which is the London based subsidiary of the Swedish exchange OM, has launched volatility futures at the

beginning of 1997. At this writing, the Deutsche Terminborse (DTB) recently launched its own futures

based on its already established implied volatility index. Thus far, the volume in these contracts has been

disappointing.

One possible explanation for this outcome is that volatility can already be traded by combining static

positions in options on price with dynamic trading in the underlying. Neuberger[24] showed that by

delta-hedging a contract paying the log of the price, the hedging error accumulates to the difference

between the realized variance and the fixed variance used in the delta-hedge. The contract paying the

log of the price can be created with a static position in options as shown in Breeden and Litzenberger[3].

Independently of Neuberger, Dupire[11] showed that a calendar spread of two such log contracts pays

1In this article, the term “volatility” refers to either the variance or the standard deviation of the return on an investment.
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the variance between the 2 maturities, and developed the notion of forward variance. Following Heath,

Jarrow and Morton[19](HJM), Dupire modelled the evolution of the term structure of this forward variance,

thereby developing the first stochastic volatility model in which the market price of volatility risk does not

require specification, even though volatility is imperfectly correlated with the price of the underlying.

The primary purpose of this article is to review three methods which have emerged for trading realized

volatility. The first method reviewed involves taking static positions in options. The classic example is

that of a long position in a straddle, since the value usually2 increases with a rise in volatility. The second

method reviewed involves delta-hedging an option position. If the investor is successful in hedging away

the price risk, then a prime determinant of the profit or loss from this strategy is the difference between the

realized volatility and the anticipated volatility used in pricing and hedging the option. The final method

reviewed for trading realized volatility involves buying or selling an over-the-counter contract whose payoff

is an explicit function of volatility. The simplest example of such a volatility contract is a vol swap. This

contract pays the buyer the difference betweeen the realized volatility3 and the fixed swap rate determined

at the outset of the contract4.

A secondary purpose of this article is to uncover the link between volatility contracts and some recent

path-breaking work by Dupire[12] and by Derman, Kani, and Kamal[10](henceforth DKK). By restricting

the set of times and price levels for which returns are used in the volatility calculation, one can synthesize

a contract which pays off the “local volatility”, i.e. the volatility which will be experienced should the

underlying be at a specified price level at a specified future date. These authors develop the notion of

forward local volatility, which is the fixed rate the buyer of the local vol swap pays at maturity in the

event the specified price level is reached. Given a complete term and strike structure of options, the entire

forward local volatility surface can be backed out from the prices of options. This surface is the two

dimensional analog of the forward rate curve central to the HJM analysis. Following HJM, these authors

impose a stochastic process on the forward local volatility surface and derive the risk-neutral dynamics of

2Jagannathan[20] shows that in general options need not be increasing in volatility.
3For marketing reasons, these contracts are usually written on the standard deviation, despite the focus of the literature

on spanning contracts on variance.
4This contract is actually a forward contract on realized volatility, but is nonetheless termed a swap.
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this surface.

The outline of this paper is as follows. The next section looks at trading realized volatility via static

positions in options. The theory of static replication using options is reviewed in order to develop some

new positions for profiting from a correct view on volatility. The subsequent section shows how dynamic

trading in the underlying can alternatively be used to create or hedge a volatility exposure. The fourth

section looks at over-the-counter volatility contracts as a further alternative for trading volatility. The

section shows how such contracts can be synthesized by combining static replication using options with

dynamic trading in the underlying asset. A fifth section draws a link between these volatility contracts

and the work on forward local volatility pioneered by Dupire and DKK. The final section summarizes and

suggests some avenues for future research.

II Trading Realized Volatility via Static Positions in Options

The classic position for gaining exposure to volatility is to buy an at-the-money5straddle. Since at-the-

money options are frequently used to trade volatility, the implied volatility from these options are widely

used as a forecast of subsequent realized volatility. The widespread use of this measure is surprising since

the approach relies on a model which itself assumes that volatility is constant.

This section derives an alternative forecast, which is also calculated from market prices of options. In

contrast to implied volatility, the forecast does not assume constant volatility, or even that the underlying

price process is continuous. In contrast to the implied volatility forecast, our forecast uses the market

prices of options of all strikes. In order to develop the alternative forecast, the next subsection reviews

the theory of static replication using options developed in Ross[26] and Breeden and Litzenberger[3]. The

following subsection applies this theory to determine a model-free forecast of subsequent realized volatility.

5Note that in the Black model, the sensitivity to volatility of a straddle is actually maximized at slightly below the forward
price.
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II-A Static Replication with Options

Consider a single period setting in which investments are made at time 0 with all payoffs being received at

time T . In contrast to the standard intertemporal model, we assume that there are no trading opportunities

other than at times 0 and T . We assume there exists a futures market in a risky asset (eg. a stock index)

for delivery at some date T ′ ≥ T . We also assume that markets exist for European-style futures options6

of all strikes. While the assumption of a continuum of strikes is far from standard, it is essentially the

analog of the standard assumption of continuous trading. Just as the latter assumption is frequently made

as a reasonable approximation to an environment where investors can trade frequently, our assumption is

a reasonable approximation when there are a large but finite number of option strikes (eg. for S&P500

futures options).

It is widely recognized that this market structure allows investors to create any smooth function f(FT )

of the terminal futures price by taking a static position at time 0 in options7. Appendix 1 shows that any

twice differentiable payoff can be re-written as:

f(FT ) = f(κ) + f ′(κ)[(FT − κ)+ − (κ − FT )+]

+
∫ κ

0
f ′′(K)(K − FT )+dK +

∫ ∞

κ
f ′′(K)(FT − K)+dK. (1)

The first term can be interpreted as the payoff from a static position in f(κ) pure discount bonds, each

paying one dollar at T . The second term can be interpreted as the payoff from f ′(κ) calls struck at κ less

f ′(κ) puts, also struck at κ. The third term arises from a static position in f ′′(K)dK puts at all strikes

less than κ. Similarly, the fourth term arises from a static position in f ′′(K)dK calls at all strikes greater

than κ.

In the absence of arbitrage, a decomposition similar to (1) must prevail among the initial values. Let

V f
0 and B0 denote the initial values of the payoff and the pure discount bond respectively. Similarly, let

6Note that listed futures options are generally American-style. However, by setting T ′ = T , the underlying futures will
converge to the spot at T and so the assumption is that there exists European-style spot options in this special case.

7This observation was first noted in Breeden and Litzenberger[3] and established formally in Green and Jarrow[17] and
Nachman[23].
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P0(K) and C0(K) denote the initial prices of the put and the call struck at K respectively. Then the no

arbitrage condition requires that:

V f
0 = f(κ)B0 + f ′(κ)[C0(κ) − P0(κ)]

+
∫ κ

0
f ′′(K)P0(K)dK +

∫ ∞

κ
f ′′(K)C0(K)dK. (2)

Thus, the value of an arbitary payoff can be obtained from bond and option prices. Note that no assumption

was made regarding the stochastic process governing the futures price.

II-B An Alternative Forecast of Variance

Consider the problem of forecasting the variance of the log futures price relative ln
(

FT

F0

)
. For simplicity,

we refer to the log futures price relative as a return, even though no investment is required in a futures

contract. The variance of the return over some interval [0, T ] is of course given by the expectation of the

squared deviation of the return from its mean:

Var0

{
ln
(

FT

F0

)}
= E0

{
ln
(

FT

F0

)
− E0

[
ln
(

FT

F0

)]}2

. (3)

It is well-known that futures prices are martingales under the appropriate risk-neutral measure. When

the futures contract marks to market continuously, then futures prices are martingales under the measure

induced by taking the money market account as numeraire. When the futures contract marks to market

daily, then futures prices are martingales under the measure induced by taking a daily rollover strategy

as numeraire, where this strategy involves rolling over pure discount bonds with maturities of one day.

Thus, given a mark-to-market frequency, futures prices are martingales under the measure induced by the

rollover strategy with the same rollover frequency.

If the variance in (3) is calculated using this measure, then E0

[
ln
(

FT

F0

)]
can be interpreted as the

futures8 price of a portfolio of options which pays off fm(F ) ≡ ln
(

FT

F0

)
at T . The spot value of this payoff

8Options do trade futures-style in Hong Kong. However, when only spot option prices are available, one can set T ′ = T
and calculate the mean and variance of the terminal spot under the forward measure. The variance is then expressed in
terms of the forward prices of options, which can be obtained from the spot price by dividing by the bond price.
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is given by (2) with κ arbitrary and f ′′
m(K) = −1

K2 . Setting κ = F0, the futures price of the payoff is given

by:

F ≡ E0

[
ln
(

FT

F0

)]
= −

∫ F0

0

1

K2
P̂0(K, T )dK −

∫ ∞

F0

1

K2
Ĉ0(K, T )dK,

where P̂0(K, T ) and Ĉ0(K, T ) denote the initial futures price of the put and the call respectively, both for

delivery at T . This futures price is initially negative9 due to the concavity (negative time value) of the

payoff.

Similarly, the variance of returns is just the futures price of the portfolio of options which pays

off fv(F ) =
{
ln
(

FT

F0

)
− F

}2
at T (see Figure 1): The second derivative of this payoff is f ′′

v (K) =
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Figure 1: Payoff for Variance of Return (F0 = 1;F = −.09).

2
K2

[
1 − ln

(
K
F0

)
+ F

]
. This payoff has zero value and slope at F0e

F . Thus, setting κ = F0e
F , the fu-

tures price of the payoff is given by:

Var0

{
ln
(

FT

F0

)}
=

∫ F0eF

0

2

K2

[
1 − ln

(
K

F0

)
+ F

]
P̂0(K, T )dK

+
∫ ∞

F0eF

2

K2

[
1 − ln

(
K

F0

)
+ F

]
Ĉ0(K, T )dK. (4)

At time 0, this futures price is an interesting alternative to implied or historical volatility as a forecast

of subsequent realized volatility. However, in common with any futures price, this forecast is a reflection

9If the futures price process is a continuous semi-martingale, then Itô’s lemma implies that E0

[
ln
(

FT

F0

)]
= −E0

1
2

∫ T

0
σ2

t dt,

where σt is the volatility at time t.
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of both statistical expected value and risk aversion. Consequently, by comparing this forecast with the

ex-post outcome, the market price of variance risk can be inferred. We will derive a simpler forecast of

variance in section IV under more restrictive assumptions, principally price continuity.

When compared to an at-the-money straddle, the static position in options used to create fv has

the advantage of maintaining sensitivity to volatility as the underlying moves away from its initial level.

Unfortunately, like straddles, these contracts can take on significant price exposure once the underlying

moves away from its initial level. An obvious solution to this problem is to delta-hedge with the underlying.

The next section considers this alternative.

III Trading Realized Volatility by Delta-Hedging Options

The static replication results of the last section made no assumption whatsoever about the price process

or volatility process. In order to apply delta-hedging with the underlying futures, we now assume that

investors can trade continuously, that interest rates are constant, and that the underlying futures price

process is a continuous semi-martingale. Note that we maintain our previous assumption that the volatility

of the futures follows an arbitrary unknown stochastic process. While one could specify a stochastic process

and develop the correct delta-hedge in such a model, such an approach is subject to significant model risk

since one is unlikely to guess the correct volatility process. Furthermore, such models generally require

dynamic trading in options which is costly in practice. Consequently, in what follows we leave the volatility

process unspecified and restrict dynamic strategies to the underlying alone. Specifically, we assume that

an investor follows the classic replication strategy specified by the Black model, with the delta calculated

using a constant volatility σh. Since the volatility is actually stochastic10,, the replication will be imperfect

and the error results in either a profit or a loss realized at the expiration of the hedge.

To uncover the magnitude of this P&L, let V (F, t; σ) denote the Black model value of a European-style

claim given that the current futures price is F and the current time is t. Note that the last argument of

10In an interesting paper, Cherian and Jarrow[9] show the existence of an equilibrium in an incomplete economy where
investors believe the Black Scholes formula is valid even though volatility is stochastic.
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V is the volatility used in the calculation of the value. In what follows, it will be convenient to have the

attempted replication occur over an arbitrary future period (T, T ′) rather than over (0, T ). Consequently,

we assume that the underlying futures matures at some date T ′′ ≥ T ′.

We suppose that an investor sells a European-style claim at T for the Black model value V (FT , T ; σh)

and holds ∂V
∂F

(Ft, t; σh) futures contracts over (T, T ′). Applying Itô’s lemma to V (F, t; σh)e
r(T ′−t) gives:

V (FT ′, T ′; σh) = V (FT , T ; σh)e
r(T ′−T ) +

∫ T ′

T
er(T ′−t) ∂V

∂F
(Ft, t; σh)dFt (5)

+
∫ T ′

T
er(T ′−t)

[
−rV (Ft, t; σh) +

∂V

∂t
(Ft, t; σh)

]
dt +

∫ T ′

T
er(T ′−t) ∂

2V

∂F 2
(Ft, t; σh)

F 2
t

2
σ2

t dt.

Now, by definition, V (F, t; σh) solves the Black partial differential equation subject to a terminal condition:

−rV (F, t; σh) +
∂V

∂t
(F, t; σh) = −σ2

hF
2

2

∂2V

∂F 2
(F, t; σh), (6)

V (F, T ′; σh) = f(F ). (7)

Substituting (6) and (7) in (5) and re-arranging gives:

f(FT ′)+
∫ T ′

T
er(T ′−t) F

2
t

2

∂2V

∂F 2
(Ft, t; σh)(σ

2
h−σ2

t )dt = V (FT , T ; σh)e
r(T ′−T )+

∫ T ′

T
er(T ′−t) ∂V

∂F
(Ft, t; σh)dFt. (8)

The right hand side is clearly the terminal value of a dynamic strategy comprising an investment at T of

V (FT , T ; σh) dollars in the riskless asset and a dynamic position in ∂V
∂F

(Ft, t; σh) futures contracts over the

time interval (T, T ′). Thus, the left hand side must also be the terminal value of this strategy, indicating

that the strategy misses its target f(FT ′) by:

P&L ≡
∫ T ′

T
er(T ′−t) F

2
t

2

∂2V

∂F 2
(Ft, t; σh)(σ

2
h − σ2

t )dt. (9)

Thus, when a claim is sold for the implied volatility σh at T , the instantaneous P&L from delta-hedging

it over (T, T ′) is
F 2

t

2
∂2V
∂F 2 (Ft, t; σh)(σ

2
h − σ2

t ), which is the difference between the hedge variance rate and

the realized variance rate, weighted by half the dollar gamma. Note that the P&L (hedging error) will be

zero if the realized instantaneous volatility σt is constant at σh. It is well known that claims with convex

payoffs have nonnegative gammas (∂2V
∂F 2 (Ft, t; σh) ≥ 0) in the Black model. For such claims (eg. options),

if the hedge volatility is always less that the true volatility (σh < σt for all t ∈ [T, T ′]), then a loss results,
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regardless of the path. Conversely, if the claim with a convex payoff is sold for an implied volatility σh

which dominates11 the subsequent realized volatility at all times, then delta-hedging at σh using the Black

model delta guarantees a positive P&L.

When compared with static options positions, delta hedging appears to have the advantage of being

insensitive to the price of the underlying. However, (9) indicates that the P&L at T ′ does depend on

the final price as well as on the price path. An investor with a view on volatility alone would like to

immunize the exposure to this path. One solution is to use a stochastic volatility model to conduct the

replication of the desired volatility dependent payoff. However, as mentioned previously, this requires

specifying a volatility process and employing dynamic replication with options. A better solution is to

choose the payoff function f(·), so that the path dependence can be removed or managed. For example,

Neuberger[24] recognized that if f(F ) = 2 ln F , then ∂2V
∂F 2 (Ft, t; σh) = e−r(T ′−t) −2

F 2
t

and thus from (9), the

P&L at T ′ is the payoff of a variance swap
∫ T ′
T (σ2

t − σ2
h)dt. This volatility contract and others related to

it are explored in the next section.

IV Trading Realized Volatility by Using Volatility Contracts

This section shows that several interesting volatility contracts can be manufactured by taking options

positions and then delta-hedging them at zero volatility. Accordingly, suppose we set σh = 0 in (8) and

negate both sides: ∫ T ′

T

F 2
t

2
f ′′(Ft)σ

2
t dt = f(FT ′) − f(FT ) −

∫ T ′

T
f ′(Ft)dFt. (10)

The left hand side is a payoff at T ′ based on both the realized instantaneous volatility σ2
t and the price

path. The dependence of this payoff on f arises only through f ′′, and accordingly, we will henceforth only

consider payoff functions f which have zero value and slope at a given point κ. The right hand side of (10)

depends only on the price path and results from adding the following three payoffs:

11See El Karoui, Jeanblanc-Picque, and Shreve[13] for the extension of this result to the case when the hedger uses a
delta-hedging strategy assuming that volatility is a function of stock price and time. Also see Avellaneda et. al.[1][2] and
Lyons[22] for similar results.
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1. The payoff from a static position in options maturing at T ′ paying f(FT ′) at T ′.

2. The payoff from a static position in options maturing at T paying −e−r(T ′−T )f(FT ) and future-valued

to T ′

3. The payoff from maintaining a dynamic position in −e−r(T ′−t)f ′(Ft) futures contracts over the time

interval (T, T ′) (assuming continuous marking-to-market and that the margin account balance earns

interest at the riskfree rate).

Thus, the payoff on the left-hand side can be achieved by combining a static position in options as discussed

in section II, with a dynamic strategy in futures as discussed in section III. The dynamic strategy can be

interpreted as an attempt to create the payoff −f(FT ′) at T ′, conducted under the false assumption of zero

volatility. Since realized volatility will be positive, an error arises, and the magnitude of this error is given

by
∫ T ′
T

F 2
t

2
f ′′(Ft)σ

2
t dt, which is the left side of (10). The payoff f(·) can be chosen so that when its second

derivative is substituted into this expression, the dependence on the path is consistent with the investor’s

joint view on volatility and price. In this section, we consider the following 3 second derivatives of payoffs

at T ′ and work out the f(·) which leads to them:

Description of Payoff f ′′(Ft) Payoff at T ′

Variance over Future Period 2
F 2

t

∫ T ′
T σ2

t dt

Future Corridor Variance 2
F 2

t
1[Ft ∈ (κ −�κ, κ + �κ)]

∫ T ′
T 1[Ft ∈ (κ −�κ, κ + �κ)]σ2

t dt

Future Variance Along Strike 2
κ2 δ(Ft − κ)

∫ T ′
T δ(Ft − κ)σ2

t dt.

IV-A Contract Paying Future Variance

Consider the following payoff function φ(F ) (see Figure 2):

φ(F ) ≡ 2
[
ln
(

κ

F

)
+

F

κ
− 1

]
, (11)

where κ is an arbitrary finite positive number. The first derivative is given by:

φ′(F ) = 2
[
1

κ
− 1

F

]
. (12)
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Figure 2: Payoff to Delta-Hedge to Create Contract Paying Variance (κ = 1).

Thus, the value and slope both vanish at F = κ. The second derivative of φ is simply:

φ′′(F ) =
2

F 2
. (13)

Substituting (11) to (13) into (10) results in a relationship between a contract paying the realized variance

over the time interval (T, T ′) and three payoffs based on price:

∫ T ′

T
σ2

t dt = 2
[
ln
(

κ

FT ′

)
+

FT ′

κ
− 1

]
− 2

[
ln
(

κ

FT

)
+

FT

κ
− 1

]
− 2

T ′∫
T

[
1

κ
− 1

Ft

]
dFt. (14)

The first two terms on the right hand side arise from static positions in options. Substituting (13) into (2)

implies that for each term, the required position is given by:

2
[
ln
(

κ

F

)
+

F

κ
− 1

]
=
∫ κ

0

2

K2
(K − F )+dK +

∫ ∞

κ

2

K2
(F − K)+dK, (15)

Thus, to create the contract paying
∫ T ′
T σ2

t dt at T ′, at t = 0, the investor should buy options at the

longer maturity T ′ and sell options at the nearer maturity T . The inital cost of this position is given by:

∫ κ
0

2
K2 P0(K, T ′)dK +

∫∞
κ

2
K2 C0(K, T ′)dK

−e−r(T ′−T )[
∫ κ
0

2
K2 P0(K, T )dK +

∫∞
κ

2
K2 C0(K, T )dK]. (16)

When the nearer maturity options expire, the investor should borrow to finance the payout of

2e−r(T ′−T )
[
ln
(

κ
FT

)
+ FT

κ
− 1

]
. At this time, the investor should also start a dynamic strategy in futures,
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holding −2e−r(T ′−t)
[

1
κ
− 1

Ft

]
futures contracts for each t ∈ [T, T ′]. The net payoff at T ′ is:

2
[
ln
(

κ

FT ′

)
+

FT ′

κ
− 1

]
− 2

[
ln
(

κ

FT

)
+

FT

κ
− 1

]
− 2

T ′∫
T

[
1

κ
− 1

Ft

]
dFt =

T ′∫
T

σ2
t dt,

as required. Since the initial cost of achieving this payoff is given by (16), an interesting forecast σ̂2
T,T ′ of

the variance between T and T ′ is given by the future value of this cost:

σ̂2
T,T ′ = erT ′

∫ κ

0

2

K2
P0(K, T ′)dK +

∫ ∞

κ

2

K2
C0(K, T ′)dK

−erT
[∫ κ

0

2

K2
P0(K, T )dK +

∫ ∞

κ

2

K2
C0(K, T )dK

]
.

In contrast to implied volatility, this forecast does not use a model in which volatility is assumed to be

constant. However, in common with any forward price, this forecast is a reflection of both statistical

expected value and risk aversion. Consequently, by comparing this forecast with the ex-post outcome, the

market price of volatility risk can be inferred.

IV-B Contract Paying Future Corridor Variance

In this subsection, we generalize to a contract which pays the “corridor variance”, defined as the variance

calculated using only the returns at times for which the futures price is within a specified corridor. In

particular, consider a corridor (κ −�κ, κ + �κ) centered at some arbitrary level κ and with width 2�κ.

Suppose that we wish to generate a payoff at T ′ of
∫ T ′
T 1[Ft ∈ (κ −�κ, κ + �κ)]σ2

t dt. Thus, the variance

calculation is based only on returns at times in which the futures price is inside the cooridot.

Consider the following payoff φ�κ(·):

φ�κ(F ) ≡ 2
[
ln
(

κ

F̄

)
+ F

(
1

κ
− 1

F̄

)]
, (17)

where:

F̄ t ≡ max[κ −�κ, min(Ft, κ + �κ)]

is the futures price floored at κ −�κ and capped at κ + �κ (see Figure 3):
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Figure 3: Futures Price Capped and Floored(κ = 1,�κ = 0.5).

From inspection, the payoff φ�κ(·) is the same as φ defined in (11), but with F replaced by F̄ . The new

payoff is graphed in Figure 4: This payoff is actually a generalization of (11) since lim
�κ↑∞

F̄ = F . For a finite
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Figure 4: Trimming the Log Payoff (κ = 1,�κ = 0.5).

corridor width, the payoff φ�κ(F ) matches φ(F ) for futures prices within the corridor. Consequently, like

φ(F ), φ�κ(F ) has zero value and slope at F = κ. However, in contrast to φ(F ), φ�κ(F ) is linear outside

the corridor with the lines chosen so that the payoff is continuous and differentiable at κ ±�κ. The first

derivative of (17) is given by:

φ′
�κ(F ) = 2

[
1

κ
− 1

F̄

]
, (18)
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while the second derivative is simply:

φ′′
�κ(F ) =

2

F 2
1[F ∈ (κ −�κ, κ + �κ)]. (19)

Substituting (17) to (19) into (10) implies that the volatility-based payoff decomposes as:

∫ T ′

T
σ2

t 1[Ft ∈ (κ −�κ, κ + �κ)]dt = 2

[
ln

(
κ

F̄ T ′

)
+ FT ′

(
1

κ
− 1

F̄ T ′

)]
− 2

[
ln

(
κ

F̄ T

)
+ FT

(
1

κ
− 1

F̄ T

)]

−2
∫ T ′

T

[
1

κ
− 1

F̄ t

]
dFt.

The payoff function φ�κ(·) has no curvature outside the corridor and consequently, the static positions

in options needed to create the first two terms will not require strikes set outside the corridor. Thus, to

create the contract paying the future corridor variance,
∫ T ′
T σ2

t 1[Ft ∈ (κ−�κ, κ+�κ)]dt at T ′, the investor

should initially only buy and sell options struck within the corridor, for an initial cost of:

∫ κ
κ−�κ

2
K2 P0(K, T ′)dK +

∫ κ+�κ
κ

2
K2C0(K, T ′)dK

−e−r(T ′−T )[
∫ κ
κ−�κ

2
K2P0(K, T )dK +

∫ κ+�κ
κ

2
K2 C0(K, T )dK].

At t = T , the investor should borrow to finance the payout of 2e−r(T ′−T )
[
ln
(

κ
F̄ T

)
+ FT

(
1
κ
− 1

F̄ T

)]
from

having initially written the T maturity options. The investor should also start a dynamic strategy in

futures, holding −2e−r(T ′−t)
[

1
κ
− 1

F̄ t

]
futures contracts for each t ∈ [T, T ′]. This strategy is semi-static in

that no trading is required when the futures price is outside the corridor. The net payoff at T ′ is:

2

[
ln

(
κ

F̄ T ′

)
+ FT ′

(
1

κ
− 1

F̄ T ′

)]
− 2

[
ln

(
κ

F̄ T

)
+ FT

(
1

κ
− 1

F̄ T

)]

−2
∫ T ′

T

[
1

κ
− 1

F̄ t

]
dFt =

∫ T ′

T
σ2

t 1[Ft ∈ (κ −�κ, κ + �κ)]dt,

as desired.

IV-C Contract Paying Future Variance Along a Strike

In the last subsection, only options struck within the corridor were used in the static options position, and

dynamic trading in the underlying futures was required ony when the futures price was in the corridor.
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In this subsection, we shrink the width of the corridor of the last subsection down to a single point and

examine the impact on the volatility based payoff and its replicating strategy. In order that this payoff

have a non-negligible value, all asset positions in subsection IV-B must be re-scaled by 1
2�κ

. Thus, the

volatility-based payoff at T ′ would instead be
∫ T ′
T

1[Ft∈(κ−�κ,κ+�κ)]
2�κ

σ2
t dt. By letting �κ ↓ 0, the variance

received can be completely localized in the spatial dimension to
∫ T ′
T δ(Ft − κ)σ2

t dt, where δ(·) denotes a

Dirac delta function12. Recalling that only options struck within the corridor are used to create the corridor

variance, the initial cost of creating this localized cash flow is given by the following ratioed calendar spread

of straddles:

1

κ2
[V0(κ, T ′) − e−r(T ′−T )V0(κ, T )],

where V0(κ, T ) is the initial cost of a straddle struck at κ and maturing at T :

V0(κ, T ) ≡ P0(κ, T ) + C0(κ, T ).

As usual, at t = T , the investor should borrow to finance the payout of |FT−κ|
κ2 from having initially written

the T maturity straddle. The appendix proves that the dynamic strategy in futures initiated at T involves

holding −e−r(T ′−t)

κ2 sgn(Ft − κ) futures contracts, where sgn(x) is the sign function:

sgn(x) ≡


−1 if x < 0;
0 if x = 0;
1 if x > 0.

When T = 0, this strategy reduces to the initial purchase of a straddle maturing at T ′, initially borrowing

e−rT ′|F0 − κ| dollars and holding −e−r(T ′−t)

κ2 sgn(Ft − κ) futures contracts for t ∈ (0, T ′). The component

of this strategy involving borrowing and futures is known as the stop-loss start-gain strategy, previously

investigated by Carr and Jarrow[7]. By the Tanaka-Meyer formula13, the difference between the payoff

from the straddles and this dynamic strategy is known as the local time of the futures price process. Local

time is a fundamental concept in the study of one dimensional stochastic processes. Fortunately, a straddle

12The Dirac delta function is a generalized function characterized by two properties:

1. δ(x) =
{ 0 if x �= 0
∞ if x = 0

2.
∫∞
−∞ δ(x)dx = 1.

. See Richards and Youn[25] for an accessible introduction to such generalized functions.
13See Karatzas and Shreve[21], pg. 220.
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combined with a stop-loss start-gain strategy in the underlying provides a mechanism for synthesizing a

contract paying off this fundamental concept. The initial time value of the straddle is the market’s (risk-

neutral) expectation of the local time. By comparing this time value with the ex-post outcome, the market

price of local time risk can be inferred.

V Connection to Recent Work on Stochastic Volatility

The last contract examined in the last section represents the limit of a localization in the futures price.

When a continuum of option maturities is also available, we may additionally localize in the time dimension

as has been done in some recent work by Dupire[12] and DKK[10]. Accordingly, suppose we further re-scale

all the asset positions described in subsection IV-C by 1
�T

where �T ≡ T ′ − T . The payoff at T ′ would

instead be: ∫ T ′

T

δ(Ft − κ)

�T
σ2

t dt.

The cost of creating this position would be:

1

κ2

[
V0(κ, T ′) − e−r(T ′−T )V0(κ, T )

�T

]
.

By letting �T ↓ 0, one gets the beautiful result of Dupire[12] that 1
κ2

[
∂V0

∂T
(κ, T ) + rV0(κ, T )

]
is the cost of

creating the payment δ(FT − κ)σ2
T at T . As shown in Dupire, the forward local variance can be defined as

the number of butterfly spreads paying δ(FT − κ) at T one must sell in order to finance the above option

position initially. A discretized version of this result can be found in DKK[10]. One can go on to impose

a stochastic process on the forward local variance as in Dupire[12] and in DKK[10]. These authors derive

conditions on the risk-neutral drift of the forward local variance, allowing replication of price or volatility-

based payoffs using dynamic trading in only the underlying asset and a single option14. In contrast to

earlier work on stochastic volatility, the form of the market price of volatility risk need not be specified.

14When two Brownian motions drive the price and the forward local volatility surface, any two assets whose payoffs are
not co-linear can be used to span.
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Summary and Suggestions for Future Research

We reviewed three approaches for trading volatility. While static positions in options do generate exposure

to volatility, they also generate exposure to price. Similarly, a dynamic strategy in futures alone can yield

a volatility exposure, but always has a price exposure as well. By combining static positions in options

with dynamic trading in futures, payoffs related to realized volatility can be achieved which have either no

exposure to price, or which have an exposure contingent on certain price levels being achieved in specified

time intervals.

Under certain assumptions, we were able to price and hedge certain volatility contracts without spec-

ifying the process for volatility. The principle assumption made was that of price continuity. Under this

assumption, a calendar spread of options emerges as a simple tool for trading the local volatility (or local

time) between the two maturities. It would be interesting to see if this insight survives the relaxation

of the critical assumption of price continuity. It would also be interesting to consider contracts which

pay nonlinear functions of realized variance or local variance. Finally, it would be interesting to develop

contracts on other statistics of the sample path such as the Sharpe ratio, skewness, covariance, correlation,

etc. In the interests of brevity, such inquiries are best left for future research.
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Appendix 1: Spanning with Bonds and Options

For any payoff f(F ), the sifting property of a Dirac delta function implies:

f(F ) =
∫ ∞

0
f(K)δ(F − K)dK

=
∫ κ

0
f(K)δ(F − K)dK +

∫ κ

0
f(K)δ(F − K)dK,

for any nonnegative κ. Integrating each integral by parts implies:

f(F ) = f(K)1(F < K)
∣∣∣∣κ
0
−
∫ κ

0
f ′(K)1(F < K)dK

+f(K)1(F ≥ K)
∣∣∣∣∞
κ

+
∫ ∞

κ
f ′(K)1(F ≥ K)dK.

Integrating each integral by parts once more implies:

f(F ) = f(κ)1(F < κ) − f ′(K)(K − F )+

∣∣∣∣κ
0
+
∫ κ

0
f ′′(K)(K − F )+dK

+f(κ)1(F ≥ κ) − f ′(K)(F − K)+

∣∣∣∣∞
κ

+
∫ ∞

κ
f ′′(K)(F − K)+dK

= f(κ) + f ′(κ)[(F − κ)+ − (κ − F )+]

+
∫ κ

0
f ′′(K)(K − F )+dK +

∫ ∞

κ
f ′′(K)(F − K)+dK.
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Appendix 2: Derivation of Futures Position When Synthesizing

Contract Paying Future Variance Along a Strike

Recall from section IV-C, that all asset positions in section IV-B were normalized by multiplying by 1
2�κ

.

Thus in particular, the futures position of −2e−r(T ′−t)
[

1
κ
− 1

F̄ t

]
contracts in subsection IV-B is changed to

−e−r(T ′−t)

�κ

[
1
κ
− 1

F̄ t

]
contracts in subsection IV-C. More explicitly, the number of contracts held is given by



−e−r(T ′−t)

�κ

[
1
κ
− 1

κ−�κ

]
if Ft ≤ κ −�κ;

−e−r(T ′−t)

�κ

[
1
κ
− 1

Ft

]
if Ft ∈ (κ −�κ, κ + �κ);

−e−r(T ′−t)

�κ

[
1
κ
− 1

κ+�κ

]
if Ft ≥ κ + �κ.

Now, by Taylor’s series:

1

κ −�κ
=

1

κ
+

1

κ2
�κ + O(�κ2)

and:

1

κ + �κ
=

1

κ
− 1

κ2
�κ + O(�κ2).

Substitution implies that the number of futures contracts held is given by:


−e−r(T ′−t)

�κ

[
− 1

κ2�κ + O(�κ2)
]

if Ft ≤ κ −�κ;

−e−r(T ′−t)

�κ

[
1
κ
− 1

Ft

]
if Ft ∈ (κ −�κ, κ + �κ);

−e−r(T ′−t)

�κ

[
1
κ2�κ + O(�κ2)

]
if Ft ≥ κ + �κ.

Thus, as �κ ↓ 0, the number of futures contracts held converges to −e−r(T ′−t)

κ2 sgn(Ft−κ), where sgn(x)

is the sign function:

sgn(x) ≡


−1 if x < 0;
0 if x = 0;
1 if x > 0.
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